Microsoft
Blazor

Building Web Applications in .NET
Second Edition

Peter Himschoot

Apress’

Microsoft Blazor
Building Web Applications in .NET

Second Edition

Peter Himschoot

Apress’

Microsoft Blazor: Building Web Applications in .NET

Peter Himschoot
Melle, Belgium

ISBN-13 (pbk): 978-1-4842-5927-6 ISBN-13 (electronic): 978-1-4842-5928-3
https://doi.org/10.1007/978-1-4842-5928-3

Copyright © 2020 by Peter Himschoot

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259276. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5928-3

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccsssssnsssassssassssnsssassssassssassssnsssasssssssssnsssansssannsas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: Your First Blazor Project..........ccccuummsmsmsmnnmmmmmssssssssssssssssssssssssssssssssssnssnns 1
Installing BIazor PrereqUISITESc.cvcererierieriee e rierses e s s see e s e s s s s s s e s s s s e s snesnesaennes 1
018 0] - O 1
ViSUAl STUAIO 2019.......cuieieieriiririre e 2
ViSU@l STUTIO COUE........ovreieecceririseee s 4
Installing the Blazor Templates for VS/COUEcccvvvvrrerierenensensesiessssessessessessssessessesssssssessesaes 5
Generating Your Project with Visual StUI0.........ccoveeereirnicninescrs e 6
Creating a Project with Visual STUdI0cccccvvirrinnnsrnrr e 7
Generating the Project with dotnet Cli..........ccovvvivrncrncnr e 8
RUNNINgG the PrOJECT......cccce et p e s s 9
Examining the Project’s Parts ..o s e s snes 11
THE SOIULION.......ceeeeeeeece e ne e nnnne s 11

TRE SEIVE ... e e e e re e e e e e s e e e s e e ne e e e nannnas 11

The Shared ProjeCt ... e s 13

The Client Blazor PrOJECLccccverirrriirere st sn s s 14
Debugging Client-Side BIAZOTc.vocorenerererereserese e s 18
Debugging with ViSual StUAI0.........cceeeereeerecrrereree s 18
Debugging in CRIOME ..o 19

iii

TABLE OF CONTENTS

The Client-Side Blazor BoOtSIrap PrOCESSccccvverrererrerserieresessensessesssssssessessessssessessessessssessessens 21
The Server-Side Blazor BoOtStrap PrOCESScccvrirrnrernienine s ses s sessesessssesennes 23
1] 4= OSSPSR 24
Chapter 2: Data Binding.........cccceuunssmmmmmmmmmmmmmmssssssssssmmmsssssssssssssesessssssssssssssessssnns 25
A QUICK LOOK @t BAZOTcceveeeeerersssesesesesssssssseesesesss s ssss s sssassnens 25
One-Way Data BindiNgc.ccccvveririnernsesnesssesess s s ssss s ssssesessesssssssssssssssssssssenens 27
One-Way Data Binding SYNtaX..........ccoouvrmsmnmnenmssesnsesssssssssessssesssssssssssessssesssssssssssssssssssnns 27
ALtribute BiNdiNg........ccoveeerriierressnese s e 28
Conditional AttHDULEScccovicecrecer e ——————— 29
Event Handling and Data BiNdiNg..........cccoveerernnininienininsenese s ssssessessessessssessessessssessessesaes 30
Event Binding SYNTAX........coivvrvrierinrinsiriene s se e s s ses e s ssesaessssessesaesasssssesne s 30
EVENT AFQUMENLS ..ottt n e e s n e s ne e 31
Using C# Lambda FUNCLIONScoecericircsinesenne e s ses s 31
Two-Way Data BiNdiNg........ccccvrerrererenrenieriesesenseresessssessessessessssessessesssssssessessesssssssessesasssssessessens 32
Two-Way Data Binding SYNTaX.........ccviverierernnnienienssensenessssssessessessssessessesssssssessesssssssessesses 32
Binding to Other Events: @bind:{EVENT} ..o vvirierererrerre e sre e ssesnes 34
Preventing Default ACHIONScco i e 34
Stopping EVent Propagationcccveeveeveneriersenensssessesessssessessessesssssssessessessssessessesssssssessesaes 36
FOrmatting DateS.......ccecvverieriiriin e e s 37
RepOrting ChaNQES........ccvireririnirese sttt e e st e et 38
The Pizza Place Single-Page Application ... s sessessens 41
Create the PizzaPlace Project...........cccviiiivninsnsnsn s sessesnens 41
Add Shared Classes to Represent the Data.........c.cccucvvrninnsnininn e 42
Build the Ul t0 SHOW the MENU ... 46
ENter the CUSTOMET ..o e 55
Validate the Customer INformation.............cccceerneensnnnsseseese e 57
SUIMIMAIY....eeeeeeeeeeree s se e e e e e esae e e e e e e e e nRe e sae e se e e e e Re e e se e nen e e nnenees 63

iv

TABLE OF CONTENTS

Chapter 3: Components and Structure for Blazor Applications........c..cccerrnsssnnnnenans 65
What Is @ Blazor COMPONENE? ..ot se e e st sanis 65
Examining the SurveyPrompt Component...........ccoovrrnninnnnnns s 66
Building a Simple Alert Component with Razor...........cccccvnvvniininsnincnncne e 67
Separating View and VIEW MOGELccovrerrerierenensenseserssessesesesssssssessessessssessessesssssssessesees 71
Understanding Parent-Child CommuRIiCatioNccccvvevererenrnieresessenesessesessessessesessessesaens 72
Referring to @ Child COMPONENTccocvivrirrerere e s s sr e s e sne s 82
Communicating with Cascading Parametersccccccvvrrerererrnienenessessesessssessesessesessessessens 83
Using Templated COMPONENTS.........ccoeiiirininsrse e s 87
Create the Grid Templated COMPONENL..........ccccorecrrierrie e 87
Use the Grid Templated COmMpPoneNt ... 89
Specify the Type Parameter’s Type EXplCItlY........ccccoeerrvevrecncc e 91
Razor TEMPIALEScccercecececr e e e s 91
Building @ Component LIDrary..........cooinnnsnnsinssnsese s s sss s e snes 94
Create the Component Library Project ... sensesnens 94
Add Components t0 the Library ... s sessesnes 96
Refer to the Library from YOUr Project ... ses s 96
Component Life CYCIE HOOKSccvererrrncrerererenerresesesesessesesessesesese s sessesessssessssesessssensenens 99
Onlnitialized and ONINItiAliZEAASYNC.........ccveerrrererere e 100
OnParametersSet and OnParametersSEIASYNCccveeereerererereseren s 100
SEtPArAMETEISASYICcveceeceree e ne e 101
OnAfterRender and OnAFterRENUEIASYNCccceereeererererrere s 102

63 (0T][0 21T T T T 103
IDISPOSADIEc..ecieieir e —————————————— 103
Refactoring PizzaPlace into COMPONENTSccceorrernienercserrse e 104
Create a Component to Display a List 0f Pizzasc.ccoevrvnininnnnsnine s 104
Show the ShoppingBasket COMPONENt ... e 107
Add the CustomerEntry COMPONENTccorreererenerese s sessenens 109
Use Cascading PrOPEITIES........cuourerrerererererreserensesesesessesesessesessssessssesessesesssssssssessssssssssnsssnnes 112
The Blazor Compilation MOodel ..o s 116
11T 111 1T o OSSOSO 119

TABLE OF CONTENTS

Chapter 4: Services and Dependency Injectioncccinnseemnrnssssnnnsssssssnsssssssnnns 121
What Is Dependency INVEISION?ccurierrernencrnsenese s sesesesse s e e ssssesessssessssesessessssenens 121
Understanding Dependency INVErSioN..........cccoevinnniniennsinscsess s ssssessesne s 121
Using the Dependency INVersion PriNCIplec.couvvcvrriennsnscniess s sessesne s 123
Adding Dependency INJECHONcocvvrvererirr e s 125
Applying an Inversion-of-Control CONTAINETccevrerererrerrerienes s sessesesessesessessesees 126
Configuring Dependency INJECHION ..o e s 128
Singleton DependenCies.......cccuv s e 130
Transient DEPENUENCIES ... e e 131
SCOPEd DEPENUENCIESccvveruerreririre e r e s r e e s ae s r e nne s 131
Disp0osing DEPenUenCIEScccerivnirierienn e 134
Understanding Blazor Dependency Lifetime..........couovreermrenernncrnscnene e 135
Client-Side Blazor EXPEriment...........cccoevvininienininsnse s ssessessssessesne s 136
Server-Side Blazor EXperiment..........ccocviiiininnsnic s snssesnens 139
The Result of the EXperiment ... 141
BUIlAING PiZzZa SEIVICES......cccovrererreereserinesesese e 142
Adding the MenuService and IMenuService AbStraction...........c.ccovvevniennieserescsnseseneens 144
Ordering Pizzas With @ SErVICe.........ccoverrerrrsrrese e 146
B30T 111 T o OSSR 149

Chapter 5: Data Storage and MiCroSErviCescccssumsssmsnsrssssnsnsssssssnssssssssnnssssssnnnss 191

WRAL IS REST? ... ss s e ss st 151
Understanding HTTP.......ccoo e r e s s n e s s 151
Universal Resource Identifiers and Methods.............ccoovinnnnn s 152
HTTP STAtUS COUBScucueererrincccri e 153

Invoking Server Functionality USINg RESTcccvcviermrrnmienesesseseresssssssesesssssssessessesssssssessens 153
I 5 T2 T T N 153
B AV BT] 0 T= T) e L 154
Some Examples 0f REST CallS........ccucevereremveriereesessersesessessssessessessssessessessessssessesssssssessessens 154

Building a Simple Microservice USing ASP.NET COrEcccoeerrrerenvenerienereseressesesesessesesessesenns 156
Services and Single Responsibility.........ccccoverrerrniennesnesc s 156
TNE PiZZA SEIVICEceereeeeeeririsseeese s se s ses s a e n e e 157

TABLE OF CONTENTS

What Is Entity Framework COre?........cocverereinseriesessssessesessssessessessessssessessesssssssessessesssssssessenes 161
Using the Code First APProachcccveeveverrerienereses s se s sessessesssses e ssesaesessessessesssssssesnees 161
Preparing Your Project for Code First Migrationsccccvevvvrvierenessensensenssessessessesessessenses 165
Creating Your Code First Migration..........c.cccvvrievennnnsenenensensesessssessese e sessessessessssessessees 170
Generating the DAtabasecc.cvvvervrierenrrirrere s e s s sr e e ene s 172

Enhancing the Pizza MICIOSEIVICEcccvcrrirrerierierrie s rses e sesses e s e s e s ssesse s e s sessaesaessenns 174

Testing Your Microservice Using POSIMan ... s 177
INStalling POSIMAN ..o e e s 177
Making REST Calls with POSIMaN..........cccceoivninninnsn s s 178

£ 1117 183

Chapter 6: Communication with MiCroServiCesccccsrmssssnnnmsssssnnsssssssssssssssnnnnss 185

Using the HHPCIENt Class........ccouererirernnmninesinise s ssssesssss s ssssesssssssssssssessesenns 185
Examining the Server ProjECt.........c.cccvvcvniennesessse s s ss s ssnses 185
Why Use @ Shared ProjeCt? ... ssssesssssse s sessesssssssssssesessssssssnens 187
Looking at the Client Project ... s sessssessnnes 188

Understanding the HIPClient CIASScccvevrrririerernsensene s sesese s sesses e ssesesessessessssessesaens 192
The HttpClientJsonExtensions Methods ..o seenes 193

Retrieving Data from the SEIVEK ... s ss e s e enens 196

L (0] 1[0 08 14T TR 201
Updating the Database With Orders.........cocccvvrerererrrinenr e ssessssessesae s 201
Building the Order MiCrOSEIVICEccevererrererrerersersssersersersesessessessessssessessesssssssessessssssssssesses 205
Talking to the Order MICIOSEIVICEc.vveververerersrsessersessesessessessessssessessessesssssssessesssssssessesses 207

£ 11T 1117 OO 208

Chapter 7: Single-Page Applications and Routing........ccccusseemnmnssssnnsmssssnsnssssssnnnnss 209

What Is a Single-Page AppliCation?ccovermrenernsmsrnesessse s ssssesessssesssnens 209

Using Layout COMPONENLTScccveemrrenerinsesenesessse s sessssessssesessssessssessssssesssssssssssssssssssssssssssssnns 210
Blazor Layout COMPONENTS......c.cuuierrenmrnsesrsesesese s srssesesese s srs e sssssssssssessssesssssssssssessnss 210
Selecting a @layout COMPONENTc.coceeerenernsmrrne s nre s 213
11110 50 {0 S 214
NESEEA LAYOULS.......coveeeereereeere s e e 215

vii

TABLE OF CONTENTS

Understanding ROULINGccccovvririinieierirsin e s see s s e s e se s e s sse s s e sssssnesaenaenns 216
INStalling the ROULETcccuereiiirire st 216
The NavMenu COMPONENTccvcvrerererirrerere s s s e ses e ssessessssessessesaesessessessessessssessesaes 217
The NavLInK COMPONENT........cccevririererieserserere s sesessessesessessessessssessessesaesssessessessessssessesnes 219

Setting the Route TEMPIALE........ccvcerererrrrere et sa e s sa e e aennen 220
Using Route Parameters........ccccvceveririernen s ses e s ses e s se s e e s s ssessnesnessesseas 220
Filter URIs with Route CONSEraints..........cccvrrnenenenenenssesesesesssssse e sessssssssesens 221

Redirecting to Other PAges ... se s snens 222
Navigating Using @an ANCROK ... s 223
Navigating Using the NavLink COmMPONENtccocevrierrienrescrne e seenes 223
Navigating With COUEcccoverrerrrrcrrc et sp s 223
Understanding the Base Tag........ccccuvvrerennnmnsenesesnnsine s sesse s s e ssessessssessessesssssssesnens 224

Sharing State Between COMPONENLS ... s snes 226

£ 111 T S 235

Chapter 8: JavaScript Interoperabilityccucccmmrmsssnmmmmsssnnnmnsssssnnmmssssnnmssssnnn 237

Calling JavaScript from CH.........ccocererrinierierir s s s s s s se e s sssse s e saesaesessesnesnes 237
Providing @ GIUE FUNCHION........cccceve ettt s 237
Using IJSRuntime to Call the Glue FUNCHIONcccovvrvererrsrrere e 238
Storing Data in the Browser With INTEropcccovvrvvvrinnnncn s 238
Passing a Reference 10 JAVaSCHiPL........ccoovvvrririnnininie s sese s s sae e ssesnes 242

Calling .NET Methods from JavaSCripl........ccoovvrvrrernnnrnienesessersesessssessesesessssessessessesessessesaes 244
Adding a Glue Function Taking a .NET INSTANCEccccevvverrerrerenersrsere s s ssesesesseenes 244
Adding a JSInvokable Method 10 INVOKEcccvvvierverernnenieneneses s sessessessessssssessesnes 245

USINgG Services fOr INTBIOP.......cucvrerierererrerrerersesersessesress s sse e sessessessessssessessessesessessessesssnsnsesaens 246
Building the ILOCAISIOrage SEIVICE......ccvrivrrrrererrrrersereresesreressessssessessessssessessesssssssessesaes 246
The Counter with the LOCAISIOrage SErVICEcuvveriervrerreriesensssessessessesessessessesssssssessesses 248

Building a Blazor Chart Component LIDraryccovcvrevresnnscnnesess s seses s sessesenns 250
Creating the Blazor Component LiDFary.........ccccvreenerernsennesesssesesesese e sesesesessesessenes 250
Adding the Component Library to YOUr Project.........coucvnvrnicnninsninsennesine s sesessesessenens 251

viii

TABLE OF CONTENTS

Adding Chart.js to the Component LiDrary.........ccccccvvevrevnnennensesiensssensessesesessessessesssssssessesees 254
Adding Chart.js Data and Options CIASSEScecrrerrerersrrerserseressssessessessessssessessesssssssessesees 258
Registering the JavaScript Glue FUNCHONccoevvvervrernrerrere e enes 262
Providing the JavaScript Interoperability SErviCe.........covvrrrrieriennrrrerere s sessesseses 263
Implementing the LineChart COMPONENL........ccccovirvrierererserseresss s sessessessessssessessees 266
Using the LineChart COMPONENT........cccoevrirrerereser s ssessessssessesne s 267

£ 1114 7R 270
1T - 271

ix

About the Author

Peter Himschoot works as a lead trainer, architect, and
strategist at U2U Training. Peter has a wide interest in
software development, which includes applications for

the Web, Windows, and mobile devices. Peter has trained
thousands of developers, is a regular speaker at international
conferences, and has been involved in many web and
mobile development projects as a software architect.

Peter has been a Microsoft Regional Director from 2003 to

2019, a group of trusted advisors to the developer and
IT professional audiences, and to Microsoft. He can be
reached on Twitter @peterhimschoot.

About the Technical Reviewer

Gerald Versluis (@jfversluis) is a software engineer at
Microsoft from the Netherlands. With years of experience
working with Xamarin, Azure, ASP.NET, and other .NET
technologies, he has been involved in a number of different
projects and has been building several real-world apps and
solutions.

Not only does he like to code, but he is also passionate
about spreading his knowledge, as well as gaining some in

the bargain. Gerald involves himself in speaking, providing
training sessions and writing blogs (https://blog.verslu.1is)
or articles, live coding, and contributing to open source projects in his spare time. He can be
reached on Twitter @jfversluis and his website https://gerald.verslu.is.

xiii

https://urldefense.proofpoint.com/v2/url?u=https-3A__blog.verslu.is_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=VRDNGbcjw7xmqW-qq7h4fqTvJpM_l7JN1d2ZXHv4dBE&s=yICqZBliCnd1SbzXZbPt5P6KpMOVSwKd2X2DBBAESWc&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__gerald.verslu.is&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=VRDNGbcjw7xmqW-qq7h4fqTvJpM_l7JN1d2ZXHv4dBE&s=Vyh9ZNEMgDu4ev3YZzsvSwwmc8ylXUEp1ZUIj3ohcc4&e=

Acknowledgments

When Jonathan Gennick from Apress asked me if I would be interested in writing a book
on Blazor, I felt honored and of course I agreed that Blazor deserves a book. Writing a
book is a group effort, so I thank Jonathan Gennick and Jill Balzano for giving me tips on
styling and writing this book, and I thank Gerald Versluis for doing the technical review
and pointing out sections that needed a bit more explaining. I also thank Magda Thielman
and Lieven Iliano from U2U, my employer, for encouraging me to write this book.

I thoroughly enjoyed writing this book, and I hope you will enjoy reading and
learning from it.

Second Edition

As the first edition of Blazor Revealed was published (using pre-release software), the

Blazor team had made a bunch of changes to the razor syntax, stopping my examples

in Blazor Revealed from working. Now that Blazor has been released and is completely

official (YEAH!!!!), the time has come to publish an updated version of Blazor Revealed.
Should you get stuck with an example, I invite you to consult the accompanying code

samples for comparison purposes.

Introduction

Back in 2018, I was attending the Microsoft Most Valued Professional and Regional
Directors Summit where we were introduced to Blazor for the first time by Steve
Sanderson and Daniel Roth. And I must admit, I was super excited about Blazor! We
learned that Blazor is a framework that allows you to build single-page applications
using C# and allows you to run any standard .NET library in the browser. Before Blazor,
your options for building a SPA were Angular, React, Vue.js, and others using JavaScript
or one of the other higher-level languages like TypeScript (which get compiled into
JavaScript anyway). I was so excited then that I ended up writing the first edition of this
book, and now I have updated it for you.

In this introduction, I will show you how browsers are now capable of running .NET
assemblies in the browser using WebAssembly, Mono, and Blazor.

A Tale of Two Wars

Think about it. The browser is one of the primary applications on your computer. You use it
every day. Companies who build browsers know that very well and are bidding for you to
use their browser. At the beginning of mainstream Internet, everyone was using Netscape,
and Microsoft wanted a share of the market, so in 1995 they built Internet Explorer 1.0,
released as part of Windows 95 Plus! pack. Newer versions were released rapidly, and
browsers started to add new features such as <blink> and <marquee> elements. This was
the beginning of the first browser war, giving people (especially designers) headaches
because some developers were building pages with blinking marquee controls ®. But
developers were also getting sore heads because of incompatibilities between browsers.
The first browser war was about having more HTML capabilities than the competition.
But all of this is now behind us with the introduction of HTML5 and modern
browsers like Google Chrome, Microsoft Edge, Firefox, Safari, and Opera. HTML5 not
only defines a series of standard HTML elements but also rules on how these should
render, making it a lot easier to build a website that looks the same in all modern
browsers. Then, in 1995 Brendan Eich wrote a little programming language known
as JavaScript (initially called LiveScript) in 10 days (What!?). It was called JavaScript
because its syntax was very similar to Java.

xvii

INTRODUCTION

JavaScript and Java are not related. Java and JavaScript have as much in
common as ham and hamster (I don’t know who formulated this first, but | love
this phrasing).

Little did Mr. Eich know how this language would impact the modern web and
even desktop application development. In 1995 Jesse James Garett wrote a white paper
called Ajax (Asynchronous JavaScript and XML), describing a set of technologies where
JavaScript is used to load data from the server and that data is used to update the
browser’s HTML. This avoids full-page reloads and allows for client-side web applications,
which are written in JavaScript that runs completely in the browser. One of the first
companies to apply Ajax was Microsoft when they built Outlook Web Access (OWA). OWA
is a web application almost identical to the Outlook desktop application proving the
power of Ajax. Soon other Ajax applications started to appear, with Google Maps stuck
in my memory as one of the other keystone applications. Google Maps would download
maps asynchronously and with some simple mouse interactions allowed you to zoom and
pan the map. Before Google Maps, the server would do the map rendering and a browser
displayed the map like any other image by downloading a bitmap from a server.

Building an Ajax website was a major undertaking that only big companies like
Microsoft and Google could afford. This soon changed with the introduction of
JavaScript libraries like jQuery and knockout.js (Knockout was also written by Steve
Sanderson, the author of Blazor!). Today we build rich web apps with Angular, React, and
Vue.js. All of them are using JavaScript or higher-level languages like TypeScript which
get transpiled into JavaScript.

Transpiling will take one language and convert it into another language. This is very
popular with TypeScript which gives you a modern high-level language. You need
JavaScript to run it in a browser, so TypeScript gets “transpiled” into JavaScript.

This brings us back to JavaScript and the second browser war. JavaScript
performance is paramount in modern browsers. Chrome, Edge, Firefox, Safari, and
Opera are all competing with one another, trying to convince users that their browser
is the fastest with cool-sounding names for their JavaScript engine like V8 and Chakra.
These engines use the latest optimization tricks like JIT compilation where JavaScript
gets converted into native code as illustrated in Figure 1.

xviii

INTRODUCTION

Browser
JavaScript Engine \
s J,
Parser HTML
- / Local storage
Compiler
L >y
\ JIT Compiler i

Figure 1. The JavaScript execution process

This process takes a lot of effort because JavaScript needs to be downloaded into
the browser, where it gets parsed, then compiled into bytecode and then Just-In-Time
converted into native code. So how can we make this process even faster?

The second browser war is all about JavaScript performance.

Introducing WebAssembly

WebAssembly allows you to take the parsing and compiling to the server. With WebAssembly,
you compile your code in a format called WASM (an abbreviation of WebASseMbly),
which gets downloaded by the browser where it gets Just-In-Time compiled into native
code as in Figure 2. Open your browser and google “webassembly demo zen garden.” One
of the links should take you to https://s3.amazonaws.com/mozilla-games/ZenGarden/
EpicZenGarden.html where you can see an impressive ray-trace demo of a Japanese Zen
garden with a screenshot in Figure 3.

Xix

https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html
https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

INTRODUCTION

JavaScript Engine \

.Js

|

code

—

Compiler

T

l

Parser

“

L

Compiler

wasm

JIT Compiler

Browser

HTML
Local storage

Figure 3. Japanese Zen garden

INTRODUCTION

From the official site webassembly.org

WebAssembly (abbreviated Wasm) is a binary instruction format for a
stack-based virtual machine. Wasm is designed as a portable target for
compilation of high-level languages like C/C++/Rust, enabling deployment
on the web for client and server applications.

So WebAssembly as a new binary format optimized for browser execution, it is
NOT JavaScript. There are compilers for languages like C++ and Rust which compile to
WASM. Some people have compiled C++ applications to wasm, allowing to run them in
the browser. There is even a Windows 2000 operating system compiled to wasm!

Which Browsers Support WebAssembly?

WebAssembly is supported by all major browsers: Chrome, Edge, Safari, Opera, and
Firefox, including their mobile versions. As WebAssembly will become more and
more important, we will see other modern browsers follow suit, but don’t expect
Internet Explorer to support WASM. You can check for this on https://caniuse.
com/#search=wasm.

WebAssembly and Mono

Mono is an open source implementation of the .NET CLI specification, meaning that
Mono is a platform for running .NET assemblies. Mono is used in Xamarin for building
mobile applications that run on Windows, Android, and iOS mobile operating systems.
You can also use it to build applications for macOS, Linux, Tizen, and others. Mono

also allows you to run .NET on Linux (its original purpose) and is written in C++. This
last part is important because we saw that you can compile C++ to WebAssembly. So,
what happened is that the Mono team decided to try to compile Mono to WebAssembly,
which they did successfully. There are two approaches. One is where you take your
.NET code and you compile it together with the Mono runtime into one big WASM
application. However, this approach takes a lot of time because you need to take several
steps to compile everything into WASM, not so practical for day-to-day development.
The other approach takes the Mono runtime and compiles it into WASM, and this runs
in the browser where it will execute .NET Intermediate Language just like normal .NET
does. The big advantage is that you can simply run .NET assemblies without having to
compile them first into WASM. This is the approach currently taken by Blazor. But Blazor

xxi

https://caniuse.com/#search=wasm
https://caniuse.com/#search=wasm

INTRODUCTION

is not the only one taking this approach. For example, there is the Ooui project which
allows you to run Xamarin.Forms applications in the browser. The disadvantage of this
is that it needs to download a lot of .NET assemblies. This can be solved by using Tree
Shaking algorithms which remove all unused code from assemblies.

Interacting with the Browser with Blazor

WebAssembly with Mono allows you to run .NET code in the browser. Steve Sanderson
used this to build Blazor. Blazor uses the popular ASP.NET MVC approach for building
applications that run in the browser. With Blazor, you build Razor files (Blazor = Browser
+ Razor) which execute inside to browser to dynamically build a web page. With Blazor,
you don’t need JavaScript to build a web app which is good news for thousands of .NET
developers who want to continue using C# (or F#).

How Does It Work?

Let’s start with a simple razor file in Listing 1 which you can find when you create a new
Blazor project (which we will do in the first chapter).

Listing 1. The Counter razor file

@page "/counter”

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
private int currentCount = 0;

private void IncrementCount()

{

currentCount++;

}
}

xxii

INTRODUCTION

This file gets compiled into .NET code (you'll find out how later in this book)
which is then executed by the Blazor engine. The result of this execution is a tree-
like structure called the render tree. The render tree is then sent to JavaScript which
updates the DOM to reflect the render tree (creating, updating, and removing HTML
elements and attributes). Listing 1 will result in h1, p (with the value of currentCount),
and button HTML elements. When you interact with the page, for example, when
you click the button, this will trigger the button’s click event which will invoke the
IncrementCount method from Listing 1. The render tree is then regenerated, and
any changes are sent again to JavaScript which will update the DOM. This process is

illustrated in Figure 4.

T T T
: Render tree : :
: : Change DOM :
1 f]
! ! 0
[1 1
i event ! (
L] 1
0 [!
0)) 0
1 LI differences 1 [
I 1 |
i ' Change DOM !
0 ' |
1 1 1
0 0 [
1 1 1
[0)

Figure 4. The Blazor WebAssembly DOM generation process

This model is very flexible. It allows you to build Progressive Web Apps and also
can be embedded in Electron desktop applications, of which Visual Studio Code is a
prime example.

In Chapter 1, section “The Client-Side Blazor Bootstrap Process,” we will look at
which files get downloaded. One of the drawbacks of Blazor WebAssembly is that this is
a substantial download on first use (after this, most files can be cached by the browser
or the Blazor runtime itself), especially the Mono runtime itself. If you want to avoid this

big download, you can use Server-Side Blazor.

xxiii

