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Introduction

Back in 2018, I was attending the Microsoft Most Valued Professional and Regional
Directors Summit where we were introduced to Blazor for the first time by Steve
Sanderson and Daniel Roth. And I must admit, I was super excited about Blazor! We
learned that Blazor is a framework that allows you to build single-page applications
using C# and allows you to run any standard .NET library in the browser. Before Blazor,
your options for building a SPA were Angular, React, Vue.js, and others using JavaScript
or one of the other higher-level languages like TypeScript (which get compiled into
JavaScript anyway). I was so excited then that I ended up writing the first edition of this
book, and now I have updated it for you.

In this introduction, I will show you how browsers are now capable of running .NET
assemblies in the browser using WebAssembly, Mono, and Blazor.

A Tale of Two Wars

Think about it. The browser is one of the primary applications on your computer. You use it
every day. Companies who build browsers know that very well and are bidding for you to
use their browser. At the beginning of mainstream Internet, everyone was using Netscape,
and Microsoft wanted a share of the market, so in 1995 they built Internet Explorer 1.0,
released as part of Windows 95 Plus! pack. Newer versions were released rapidly, and
browsers started to add new features such as <blink> and <marquee> elements. This was
the beginning of the first browser war, giving people (especially designers) headaches
because some developers were building pages with blinking marquee controls ®. But
developers were also getting sore heads because of incompatibilities between browsers.
The first browser war was about having more HTML capabilities than the competition.
But all of this is now behind us with the introduction of HTML5 and modern
browsers like Google Chrome, Microsoft Edge, Firefox, Safari, and Opera. HTML5 not
only defines a series of standard HTML elements but also rules on how these should
render, making it a lot easier to build a website that looks the same in all modern
browsers. Then, in 1995 Brendan Eich wrote a little programming language known
as JavaScript (initially called LiveScript) in 10 days (What!?). It was called JavaScript
because its syntax was very similar to Java.

xvii



INTRODUCTION

JavaScript and Java are not related. Java and JavaScript have as much in
common as ham and hamster (I don’t know who formulated this first, but | love
this phrasing).

Little did Mr. Eich know how this language would impact the modern web and
even desktop application development. In 1995 Jesse James Garett wrote a white paper
called Ajax (Asynchronous JavaScript and XML ), describing a set of technologies where
JavaScript is used to load data from the server and that data is used to update the
browser’s HTML. This avoids full-page reloads and allows for client-side web applications,
which are written in JavaScript that runs completely in the browser. One of the first
companies to apply Ajax was Microsoft when they built Outlook Web Access (OWA). OWA
is a web application almost identical to the Outlook desktop application proving the
power of Ajax. Soon other Ajax applications started to appear, with Google Maps stuck
in my memory as one of the other keystone applications. Google Maps would download
maps asynchronously and with some simple mouse interactions allowed you to zoom and
pan the map. Before Google Maps, the server would do the map rendering and a browser
displayed the map like any other image by downloading a bitmap from a server.

Building an Ajax website was a major undertaking that only big companies like
Microsoft and Google could afford. This soon changed with the introduction of
JavaScript libraries like jQuery and knockout.js (Knockout was also written by Steve
Sanderson, the author of Blazor!). Today we build rich web apps with Angular, React, and
Vue.js. All of them are using JavaScript or higher-level languages like TypeScript which
get transpiled into JavaScript.

Transpiling will take one language and convert it into another language. This is very
popular with TypeScript which gives you a modern high-level language. You need
JavaScript to run it in a browser, so TypeScript gets “transpiled” into JavaScript.

This brings us back to JavaScript and the second browser war. JavaScript
performance is paramount in modern browsers. Chrome, Edge, Firefox, Safari, and
Opera are all competing with one another, trying to convince users that their browser
is the fastest with cool-sounding names for their JavaScript engine like V8 and Chakra.
These engines use the latest optimization tricks like JIT compilation where JavaScript
gets converted into native code as illustrated in Figure 1.

xviii



INTRODUCTION

Browser
JavaScript Engine \
s J,
Parser HTML
- / Local storage
Compiler
L >y
\ JIT Compiler i

Figure 1. The JavaScript execution process

This process takes a lot of effort because JavaScript needs to be downloaded into
the browser, where it gets parsed, then compiled into bytecode and then Just-In-Time
converted into native code. So how can we make this process even faster?

The second browser war is all about JavaScript performance.

Introducing WebAssembly

WebAssembly allows you to take the parsing and compiling to the server. With WebAssembly,
you compile your code in a format called WASM (an abbreviation of WebASseMbly),
which gets downloaded by the browser where it gets Just-In-Time compiled into native
code as in Figure 2. Open your browser and google “webassembly demo zen garden.” One
of the links should take you to https://s3.amazonaws.com/mozilla-games/ZenGarden/
EpicZenGarden.html where you can see an impressive ray-trace demo of a Japanese Zen
garden with a screenshot in Figure 3.
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From the official site webassembly.org

WebAssembly (abbreviated Wasm) is a binary instruction format for a
stack-based virtual machine. Wasm is designed as a portable target for
compilation of high-level languages like C/C++/Rust, enabling deployment
on the web for client and server applications.

So WebAssembly as a new binary format optimized for browser execution, it is
NOT JavaScript. There are compilers for languages like C++ and Rust which compile to
WASM. Some people have compiled C++ applications to wasm, allowing to run them in
the browser. There is even a Windows 2000 operating system compiled to wasm!

Which Browsers Support WebAssembly?

WebAssembly is supported by all major browsers: Chrome, Edge, Safari, Opera, and
Firefox, including their mobile versions. As WebAssembly will become more and
more important, we will see other modern browsers follow suit, but don’t expect
Internet Explorer to support WASM. You can check for this on https://caniuse.
com/#search=wasm.

WebAssembly and Mono

Mono is an open source implementation of the .NET CLI specification, meaning that
Mono is a platform for running .NET assemblies. Mono is used in Xamarin for building
mobile applications that run on Windows, Android, and iOS mobile operating systems.
You can also use it to build applications for macOS, Linux, Tizen, and others. Mono

also allows you to run .NET on Linux (its original purpose) and is written in C++. This
last part is important because we saw that you can compile C++ to WebAssembly. So,
what happened is that the Mono team decided to try to compile Mono to WebAssembly,
which they did successfully. There are two approaches. One is where you take your
.NET code and you compile it together with the Mono runtime into one big WASM
application. However, this approach takes a lot of time because you need to take several
steps to compile everything into WASM, not so practical for day-to-day development.
The other approach takes the Mono runtime and compiles it into WASM, and this runs
in the browser where it will execute .NET Intermediate Language just like normal .NET
does. The big advantage is that you can simply run .NET assemblies without having to
compile them first into WASM. This is the approach currently taken by Blazor. But Blazor
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is not the only one taking this approach. For example, there is the Ooui project which
allows you to run Xamarin.Forms applications in the browser. The disadvantage of this
is that it needs to download a lot of .NET assemblies. This can be solved by using Tree
Shaking algorithms which remove all unused code from assemblies.

Interacting with the Browser with Blazor

WebAssembly with Mono allows you to run .NET code in the browser. Steve Sanderson
used this to build Blazor. Blazor uses the popular ASP.NET MVC approach for building
applications that run in the browser. With Blazor, you build Razor files (Blazor = Browser
+ Razor) which execute inside to browser to dynamically build a web page. With Blazor,
you don’t need JavaScript to build a web app which is good news for thousands of .NET
developers who want to continue using C# (or F#).

How Does It Work?

Let’s start with a simple razor file in Listing 1 which you can find when you create a new
Blazor project (which we will do in the first chapter).

Listing 1. The Counter razor file

@page "/counter”

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
private int currentCount = 0;

private void IncrementCount()

{

currentCount++;

}
}
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This file gets compiled into .NET code (you'll find out how later in this book)
which is then executed by the Blazor engine. The result of this execution is a tree-
like structure called the render tree. The render tree is then sent to JavaScript which
updates the DOM to reflect the render tree (creating, updating, and removing HTML
elements and attributes). Listing 1 will result in h1, p (with the value of currentCount),
and button HTML elements. When you interact with the page, for example, when
you click the button, this will trigger the button’s click event which will invoke the
IncrementCount method from Listing 1. The render tree is then regenerated, and
any changes are sent again to JavaScript which will update the DOM. This process is

illustrated in Figure 4.
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Figure 4. The Blazor WebAssembly DOM generation process

This model is very flexible. It allows you to build Progressive Web Apps and also
can be embedded in Electron desktop applications, of which Visual Studio Code is a
prime example.

In Chapter 1, section “The Client-Side Blazor Bootstrap Process,” we will look at
which files get downloaded. One of the drawbacks of Blazor WebAssembly is that this is
a substantial download on first use (after this, most files can be cached by the browser
or the Blazor runtime itself), especially the Mono runtime itself. If you want to avoid this

big download, you can use Server-Side Blazor.
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