

Nico Vermeir

Introducing	.NET	6
Getting	Started	with	Blazor,	MAUI,	Windows
App	SDK,	Desktop	Development,	and
Containers

Nico Vermeir
Merchtem, Belgium

ISBN 978-1-4842-7318-0 e-ISBN 978-1-4842-7319-7
https://doi.org/10.1007/978-1-4842-7319-7

© Nico Vermeir 2022

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or
in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and
accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with
respect to the material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Apress imprint is published by the registered company APress
Media, LLC part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/978-1-4842-7319-7

Introduction
Welcome to .NET 6! A very exciting new release of Microsoft’s
managed application runtime and SDK. .NET 6 is a release that has
been long in the making; it is the next step in the one .NET dream. In
this book, we will discover what .NET 6 has to offer; we will learn
about exciting updates on existing frameworks like WinForms and
WPF and discover new things like Minimal APIs.

We will start with a quick tour around .NET 6 in the first chapter,
just to get a feel of how big this .NET release really is. In the next
chapter, we will go a bit more technical and see what the different
runtimes are and how a cross-platform framework like .NET still
manages to run native applications on Windows, mobile, and more. In
Chapter 3, we will go into the command line tooling; here we will
discover that Visual Studio is not performing any magic tricks, it’s just
calling the CLI underneath. In Chapters 4–7, we will learn about the
different application frameworks .NET hosts, from native Windows
desktop to web applications with ASP.NET Core to cross-platform
mobile applications. From there, we cross over into the cloud and see
Azure’s support for .NET 6. The final three chapters are a bit more
advanced; we go into application architecture and what .NET 6 and C#
10 features help write better architectured code, and we take a look at
the compiler platform, or Roslyn. And finally we end on a chapter with
some more advanced topics like threading and async/await.

The book is written in a demo-based manner. Feel free to pull up
your computer and follow along while reading; all the steps are
explained so that we can discover the topics together.

Happy learning!

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page.

Acknowledgments
Thank you to the great people at Apress for the support during the
writing of this book.

Thank you Damien Foggon for the technical review; you’ve helped
me grow as an author and made this a better book.

A big thank you to the worldwide .NET community. Each and every
one of you keeps pushing me every day to grow as a developer, as a
community member, and as a person.

Table	of	Contents
Chapter	1:	A	Tour	of	.NET	6

.NET	6
Version	Support
Supported	Versions
A	Unified	Platform
Roadmap
Supported	Operating	Systems
Command	Line	Interface
Desktop	Development
Blazor
MAUI
Wrapping	Up

Chapter	2:	Runtimes	and	Desktop	Packs
.NET	6	Architecture
Runtimes

CoreCLR
Mono
WinRT

Managed	Execution	Process
Desktop	Packs
Wrapping	Up

Chapter	3:	Command	Line	Interface
Dotnet	New
Dotnet	Restore

NuGet.config
Dotnet	Build
Dotnet	Publish

Dotnet	Run
Dotnet	Test
Using	the	CLI	in	GitHub	Actions
Other	Commands
Wrapping	Up

Chapter	4:	Desktop	Development
WinAPI
WinForms

STAThread
WinForms	Startup
The	Message	Loop
The	Form	Designer

WPF
WPF	Startup
XAML	Layout
Visual	Tree
Data	Binding

Windows	App	SDK
Building	a	Windows	App	SDK	application
Using	Windows	APIs	with	Windows	App	SDK
Packaging

Migrating	to	.NET	6
Upgrade	Assistant

Wrapping	Up
Chapter	5:	Blazor

Blazor	WebAssembly
Creating	a	Blazor	Wasm	Project
Blazor	Progressive	Web	Apps

Exploring	the	Blazor	Client	Project
Blazor	in	.NET	6
Blazor	Component	System
Creating	Blazor	Pages
Running	a	Blazor	App

Blazor	Server
SignalR

Blazor	Desktop
Wrapping	Up

Chapter	6:	MAUI
Project	Structure
Exploring	MAUI

The	Cross-Platform	World
Application	Lifecycle
MVVM
MVVM	Toolkit
Wrapping	Up

Chapter	7:	ASP.NET	Core
Model-View-Controller

Routing
Views
Controllers

Web	API
Controller-Based	APIs
Minimal	APIs

Wrapping	Up
Chapter	8:	Microsoft	Azure

Web	Apps

Creating	an	App	Service
Static	Web	Apps
Web	App	for	Containers

Docker
Azure	Functions

Deploying	Azure	Functions
Wrapping	Up

Chapter	9:	Application	Architecture
Record	Types
Monolith	Architecture
Microservices
Container	Orchestration

Kubernetes
Docker	Compose

Dapr
Installing	Dapr
Dapr	State	Management

Wrapping	Up
Chapter	10:	.NET	Compiler	Platform

Roslyn
Compiler	API
Diagnostic	API
Scripting	API
Workspace	API
Syntax	Tree
Roslyn	SDK

Creating	an	Analyzer
Source	Generators

Writing	a	Source	Generator
Debugging	Source	Generators

Wrapping	Up
Chapter	11:	Advanced	.NET	6

Garbage	Collector
The	Heap
The	Stack
Garbage	Collection

A	Look	at	the	Threadpool
Async	in	.NET	6

Await/Async
Cancellations
WaitAsync

Conclusion
Index

About	the	Author
Nico	Vermeir
 is a Microsoft MVP in the field of
Windows development. He works as an
application architect at Inetum-
Realdolmen Belgium and spends a lot of
time keeping up with the rapidly
changing world of technology. He loves
talking about and using the newest and
experimental technologies in the .NET
stack. Nico cofounded MADN, a user
group focusing on building modern
applications in .NET. He regularly
presents on the topic of .NET at user
groups and conferences.

In his free time, you can find him
enjoying rides on his motorcycle, jamming on his guitar, or having a
beer with friends.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
N. Vermeir, Introducing	.NET	6
https://doi.org/10.1007/978-1-4842-7319-7_1

1.	A	Tour	of	.NET	6
Nico Vermeir1

Merchtem, Belgium

Welcome to .NET 6! An exciting new release of Microsoft’s popular
framework. .NET 6 is the next big step in delivering the “one .NET”
vision. The vision that would unify all of .NET to have a single runtime
for mobile, Web, IoT, games, and many more targets.

In this first chapter, we will look at the versioning of .NET, together
with its support timeframes and release schedule. We will go over the
supported operating systems, what it means to have a unified
platform, and how to get started with .NET 6 using the command line
interface.

.NET	6
The .NET framework has been around since the year 2000. Over the
years, it has grown into a very mature, popular framework that could
target many platforms. However, sharing code between those
different platforms was not an easy task because of how the .NET
framework was built. With .NET Core, Microsoft wanted to start from
a clean slate using .NET Standard as a way to share code between the
different platforms. They took the API surface of the base class library
and started implementing everything anew, using modern techniques
and APIs to improve performance of the framework. .NET Standard
was created as an interface. It exposed parts of the BCL API; .NET Core
is an implementation of that .NET Standard interface. Because .NET
Standard was an abstraction, we could create .NET Standard class
libraries that could be referenced from every type of platform, as long
as they used the correct version of .NET Core. This quickly became
confusing as .NET Core 3 was using .NET Standard 2.1, but .NET
Standard 1.6 was .NET Core 1.0. The next step in unifying all of .NET

https://doi.org/10.1007/978-1-4842-7319-7_1

was taken with .NET 5. .NET 5, which was actually .NET Core 4, was
the release where .NET Core became the successor of the classic .NET
Framework. The final release of the classic .NET Framework is 4.8;
from that moment on, .NET Core is the main branch of the framework.
To avoid confusion, later on .NET Core was renamed to simply .NET
and the versioning of the classic .NET framework was taken over,
hence .NET 5. .NET Standard disappeared as well; as of .NET 5, we just
have .NET 5 class libraries and those are compatible with every
platform that is on .NET 5. .NET 6 is one of the final steps in unifying
the platform as it unifies Mono and .NET, fulfilling the “one .NET”
dream.

So far we have spoken about .NET, .NET Core, and .NET
Framework. This might get a bit confusing, so here is how I will talk
about the different types of .NET in this book:

.NET: This is .NET 5, .NET 6, and future releases. It is the unified
release.
.NET Core: This is the previous release that wasn’t .NET Framework.
.NET Framework: The classic .NET framework that ended on
version 4.8.

Version	Support
First and foremost, .NET 6 is a Long Term Support release (LTS),
meaning it will receive updates for the coming 3 years (up until, and
including, 2024). Non-LTS versions are supported for 1 year, usually
up to 3 months after the next LTS version release.

So how do we recognize LTS versions from non-LTS versions?
Simple. Every odd numbered release (.NET 5, .NET 7, etc.) will be a
non-LTS release and every even numbered release (.NET 6, .NET 8,
etc.) will be an LTS release (Figure 1-1). The current release cadence
Microsoft has set for .NET is a new release every year around
November. This release cadence was introduced with .NET 5.

Figure	1-1 Release timeline of .NET (Source: Microsoft)

Why is this important? If you’re starting a new software project,
it’s important to know that the underlying framework will not cause
any security risks. No software is bug-free, so bugs and security risks
will show up over the lifetime of any software; .NET is no exception.
Writing your software using a version of .NET that will receive patches
and updates for the coming years ensures that vulnerabilities and
bugs in the framework get patched instead of potentially make your
application crash, or vulnerable for attacks.

Does this mean that we can forget about the odd-numbered
releases, since they are only supported for about a year? Not
necessarily, it all depends on the context around the software you’re
developing. If you’re building software that will still be in active
development by the time of the next .NET LTS release, it can easily be
included in the backlog to upgrade to the next version once it lands. If
you’re building software that will be delivered in the current non-LTS
timeframe and there’s no maintenance planned on the software, make
sure your customer knows about the support. So, as usual it depends.
Luckily, upgrading to a next release usually isn’t very difficult. If you
are in a consultant role, set the correct expectations to your customer.

Tip Do not jump on the latest version of .NET just because it’s the
latest version, be sure to check the support status, inform your
customer when applicable, and make a well-informed decision.

Supported	Versions
There are multiple versions of .NET under active support at any given
time. Table 1-1 gives an overview of the support status of the more
recent .NET versions.

Table	1-1 An overview of .NET versions and their support status

Version Original	release	date Support	level End	of	support

.NET 6 November 2021 LTS February 2025

.NET 5 November 2020 Non-LTS February 2022

.NET Core 3.1 December 2019 LTS December 2022

All details concerning support for .NET can be found in the official

.NET Support Policy found at
https://dotnet.microsoft.com/platform/support/policy/dotnet-
core.

A	Unified	Platform
From the very start, .NET Core was meant to be cross-platform and
cross-idiom. Its purpose was to bring a bunch of separate, .NET-based
technologies together under one umbrella. Before .NET Core, we could
do different styles of apps, but not all of those were part of .NET, for
example, Mono, the open-source .NET implementation for Linux- and
Unix-based systems and Xamarin, the native mobile .NET solution
built on Mono.

.NET Core 3 shifted the unification of .NET into high gear by adding
Windows Presentation Foundation (WPF) and Windows Forms
(WinForms) support into the framework. .NET 5 expanded on this
work by adding Mono; the work on Mono brought .NET into the
WebAssembly world. Blazor WebAssembly was the first result of this
unification. With Blazor WebAssembly, we got native .NET running in
the browser, using Mono. More information on Blazor can be found in
Chapter 5 of this book. .NET 6 delivers the fully realized unified vision
by including Xamarin as a part of .NET instead of a separate
framework.

Figure	1-2 .NET – a unified platform (Source: Microsoft)

https://dotnet.microsoft.com/platform/support/policy/dotnet-core

Xamarin is no longer the mobile platform that happens to look like
.NET. It’s now a part of the framework, using .NET class libraries and
.NET SDK tools to provide a great developer experience. A quick
example of this is being able to use dotnet new ios or dotnet
new android followed by dotnet build or dotnet run. As a
result, you’ll see a mobile project being created, compiled and running
on either a physical device or emulator. This is the result of work that
started back in .NET 5, by bringing Mono into .NET.

We’ll dive deeper into Xamarin in the MAUI chapter of this book.

Roadmap
Microsoft made the decision to openly develop .NET, something
they’ve done since .NET Core. That means that the backlog for .NET 6,
and future versions, is visible to everyone. There’s even a Blazor-
based web application that shows an overview of what’s proposed,
what’s in progress, and what’s been completed. The website can be
found at https://themesof.net/, and because everything
happens out in the open, the Blazor web app’s source code is available
at https://github.com/terrajobst/themesof.net.

The .NET team uses GitHub and GitHub Issues, Boards, and
Milestones to keep track of their work. Although GitHub Issues is not
very agile-friendly, especially when compared to tools like Azure
DevOps or Jira, they have identified four categories of issues. Issues
are categorized using labels. The four labels, as per their website, are
as follows:
1.
Theme: A top-level/overarching objective that will span the
project leases. A theme will often have an associated document
describing those objectives.

2.
Epic: This is a higher level grouping of related user stories; it can
span up to the entire release. For example, “Enterprises have a
first class experience acquiring and deploying .NET 6.0.”

3.
User	story: An explanation of the feature written from the
perspective of the end user. Its purpose is to articulate how a
software feature will provide value to the customer. Once
implemented, it will contribute value toward the overall epic. For
example, “As an IT Pro, I have easy access to .NET Core installer

https://themesof.net/
https://github.com/terrajobst/themesof.net

release information and scripts in my air gapped environment so I
can use this to determine which updates need to be deployed.”

4.
Issue: These are all other work items. These could be bugs,
features, or developer tasks. We leave it up to the engineering
team/area owner how and if they want to use these.

Supported	Operating	Systems
Since .NET is a cross-platform framework, there are a multitude of
operation systems supported. Support ranges from Windows to Linux,
macOS, Android, iOS, and tvOS. Table 1-2 lists the different versions of
Windows that support .NET 6.

Table	1-2 Versions of Windows that support .NET 6

Operating	system Version Architecture

Windows 7 SP1, 8.1 x64, x86

Windows 10 Version 1607+ x64, x86, ARM64

Windows 11 Version 22000+ x64, x86, ARM64

Windows Server 2012+ x64, x86

Windows Server Core 2012+ x64, x86

Nano Server Version 1809+ x64

Table 1-3 lists the supported Linux distributions with the
supported versions and architecture.

Table	1-3 Linux versions that support .NET 6

Operating	system Version Architecture

Alpine Linux 3.13+ x64, ARM64, ARM32

CentOS 7+ x64

Debian 10+ x64, x86, ARM64, ARM32

Fedora 33+ x64

openSUSE 15+ x64

Red Hat Enterprise Linux 7+ x64, ARM64

SUSE Enterprise Linux 12 SP2+ x64

Ubuntu 16.04, 18.04, 20.04+ x64, ARM64, ARM32

Table 1-4 lists the supported versions and architectures for macOS.

Table	1-4 macOS versions that support .NET 6

Operating	system Version Architecture

macOS 10.15+ x64, ARM64

Table 1-5 lists the supported versions and architectures for
Android.

Table	1-5 Android versions that support .NET 6

Operating	system Version Architecture

Android API 21+ x64, ARM, ARM64

Table 1-6 lists the supported versions and architectures for iOS
and tvOS.

Table	1-6 iOS and tvOS versions that support .NET 6

Operating	system Version Architecture

iOS 10.0+ x64, ARM, ARM64

tvOS 10.0+ x64, ARM, ARM64

The above tables list supported operating systems, versions, and
architectures at the time of writing. The most up-to-date version of
this list for .NET 6 is available at
https://github.com/dotnet/core/blob/main/release-
notes/6.0/supported-os.md.

Command	Line	Interface
.NET ships with a powerful Command Line Interface (CLI) tooling
system since .NET Core. With the .NET command line, we can do
things like creating a new project, installing tools and templates,
running tests, compiling, and much more. While most of the CLI
commands are rarely used manually, we can use them to script build
and deploy automation. Tools like Azure DevOps or GitHub actions
have full support for these commands.

The basic commands consist of:
New
Restore
Build

https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md

Publish
Run
Test
Vstest
Pack
Migrate
Clean
Sln
Help
Store

Before we use the CLI, we have to install .NET 6 on our machine. If
you have Visual Studio 2022 installed, you might already have it up
and running.

We can see what version of .NET we are currently running by
opening up a Powershell prompt and executing dotnet –-
version.

Figure	1-3 Current installed version of .NET

If you get another version, maybe from .NET 5, you can download
the .NET 6 installer from
https://dotnet.microsoft.com/download/dotnet/6.0.
Make sure to download and install the SDK to get the command line
tooling.

Once .NET 6 is installed, we can see what project templates we
have by executing dotnet new. The tooling will list all available
options if we don’t specify a specific template as shown in Figure 1-4.
The contents of this list depend of course on the different workloads
and templates you have installed on your system.

https://dotnet.microsoft.com/download/dotnet/6.0

