

Kubernetes in Action, Second Edition MEAP V15
1. Copyright_2023_Manning_Publications

2. welcome

3. 1_Introducing_Kubernetes

4. 2_Understanding_containers

5. 3_Deploying_your_first_application

6. 4_Introducing_Kubernetes_API_objects

7. 5_Running_workloads_in_Pods

8. 6_Manging_the_Pod_lifecycle

9. 7_Attaching_storage_volumes_to_Pods

10. 8_Persisting_data_in_PersistentVolumes

11. 9_Configuration_via_ConfigMaps,_Secrets,_and_the_Downward_API

12. 10_Organizing_objects_using_Namespaces_and_Labels

13. 11_Exposing_Pods_with_Services

14. 12_Exposing_Services_with_Ingress

15. 13_Replicating_Pods_with_ReplicaSets

16. 14_Managing_Pods_with_Deployments

17. 15_Deploying_stateful_workloads_with_StatefulSets

18. 16_Deploying_node_agents_and_daemons_with_DaemonSets

19. 17_Running_finite_workloads_with_Jobs_and_CronJobs

MEAP Edition

Manning Early Access Program

Kubernetes in Action

Second edition

Version 15

Copyright 2023 Manning

Publications

©Manning Publications Co. We welcome reader comments about anything
in the manuscript - other than typos and other simple mistakes.

These will be cleaned up during production of the book by copyeditors and
proofreaders.

https://livebook.manning.com/book/kubernetes-in-action-

secondedition/discussion

For more information on this and other Manning titles go to

manning.com

welcome
Thank you for purchasing the MEAP for Kubernetes in Action, Second
Edition.

As part of my work at Red Hat, I started using Kubernetes in 2014, even
before version 1.0 was released. Those were interesting times. Not many
people working in the software industry knew about Kubernetes, and there
was no real community yet. There were hardly any blog posts about it and
the documentation was still very basic. Kubernetes itself was ridden with
bugs. When you combine all these facts, you can imagine that working with
Kubernetes was extremely difficult.

In 2015 I was asked by Manning to write the first edition of this book. The
originally planned 300-page book grew to over 600 pages full of
information. The writing forced me to also research those parts of
Kubernetes that I wouldn’t have looked at more closely otherwise. I put
most of what I learned into the book. Judging by their reviews and
comments, readers love a detailed book like this.

The plan for the second edition of the book is to add even more information
and to rearrange some of the existing content. The exercises in this book
will take you from deploying a trivial application that initially uses only the
basic features of Kubernetes to a full-fledged application that incorporates
additional features as the book introduces them.

The book is divided into five parts. In the first part, after the introduction
of Kubernetes and containers, you’ll deploy the application in the simplest
way. In the second part you’ll learn the main concepts used to describe and
deploy your application. After that you’ll explore the inner workings of
Kubernetes components. This will give you a good foundation to learn the
difficult part - how to manage Kubernetes in production. In the last part of
the book you’ll learn about best practices and how to extend Kubernetes.

I hope you all like this second edition even better than the first, and if you’re
reading the book for the first time, your feedback will be even more
valuable. If any part of the book is difficult to understand, please post your
questions, comments or suggestions in the liveBook forum.

Thank you for helping me write the best book possible.

—Marko Lukša

In this book

Copyright 2023 Manning Publications welcome brief contents 1

Introducing Kubernetes 2 Understanding containers 3 Deploying your first

application 4 Introducing Kubernetes API objects 5 Running workloads in

Pods 6 Manging the Pod lifecycle 7 Attaching storage volumes to Pods 8

Persisting data in PersistentVolumes 9 Configuration via ConfigMaps,

Secrets, and the Downward API 10 Organizing objects using Namespaces

and Labels 11 Exposing Pods with Services 12 Exposing Services with Ingress

13 Replicating Pods with ReplicaSets 14 Managing Pods with

Deployments 15 Deploying stateful workloads with StatefulSets 16

Deploying node agents and daemons with DaemonSets 17 Running finite

workloads with Jobs and CronJobs

1 Introducing Kubernetes
This chapter covers

Introductory information about Kubernetes and its origins

Why Kubernetes has seen such wide adoption

How Kubernetes transforms your data center

An overview of its architecture and operation

How and if you should integrate Kubernetes into your own organization

Before you can learn about the ins and outs of running applications with

Kubernetes, you must first gain a basic understanding of the problems
Kubernetes is designed to solve, how it came about, and its impact on
application development and deployment. This first chapter is intended to
give a general overview of these topics.

1.1 Introducing Kubernetes

The word Kubernetes is Greek for pilot or helmsman, the person who steers
the ship - the person standing at the helm (the ship’s wheel). A helmsman
is not necessarily the same as a captain. A captain is responsible for the
ship, while the helmsman is the one who steers it.

After learning more about what Kubernetes does, you’ll find that the name
hits the spot perfectly. A helmsman maintains the course of the ship,
carries out the orders given by the captain and reports back the ship's
heading. Kubernetes steers your applications and reports on their status
while you - the captain - decide where you want the system to go.

How to pronounce Kubernetes and what is k8s?

The correct Greek pronunciation of Kubernetes, which is Kie-ver-nee-tees,
is different from the English pronunciation you normally hear in technical
conversations. Most often it’s Koo-ber-netties or Koo-ber-nay’-tace, but you
may also hear Koo-ber-nets, although rarely.

In both written and oral conversations, it’s also referred to as Kube or K8s,
pronounced Kates, where the 8 signifies the number of letters omitted
between the first and last letter.

1.1.1 Kubernetes in a nutshell

Kubernetes is a software system for automating the deployment and
management of complex, large-scale application systems composed of
computer processes running in containers. Let’s learn what it does and how
it does it.

Abstracting away the infrastructure

When software developers or operators decide to deploy an application,
they do this through Kubernetes instead of deploying the application to
individual computers. Kubernetes provides an abstraction layer over the
underlying hardware to both users and applications.

As you can see in the following figure, the underlying infrastructure,
meaning the computers, the network and other components, is hidden
from the applications, making it easier to develop and configure them.

Figure 1.1 Infrastructure abstraction using Kubernetes

Standardizing how we deploy applications

Because the details of the underlying infrastructure no longer affect the
deployment of applications, you deploy applications to your corporate data
center in the same way as you do in the cloud. A single manifest that
describes the application can be used for local deployment and for
deploying on any cloud provider. All differences in the underlying
infrastructure are handled by Kubernetes, so you can focus on the
application and the business logic it contains.

Deploying applications declaratively

Kubernetes uses a declarative model to define an application, as shown in
the next figure. You describe the components that make up your
application and Kubernetes turns this description into a running
application. It then keeps the application healthy by restarting or recreating
parts of it as needed.

Figure 1.2 The declarative model of application deployment

Whenever you change the description, Kubernetes will take the necessary
steps to reconfigure the running application to match the new description,
as shown in the next figure.

Figure 1.3 Changes in the description are reflected in the running application

Taking on the daily management of applications

As soon as you deploy an application to Kubernetes, it takes over the daily
management of the application. If the application fails, Kubernetes will
automatically restart it. If the hardware fails or the infrastructure topology
changes so that the application needs to be moved to other machines,
Kubernetes does this all by itself. The engineers responsible for operating
the system can focus on the big picture instead of wasting time on the
details.

To circle back to the sailing analogy: the development and operations
engineers are the ship’s officers who make high-level decisions while sitting
comfortably in their armchairs, and Kubernetes is the helmsman who takes
care of the low-level tasks of steering the system through the rough waters
your applications and infrastructure sail through.

Figure 1.4 Kubernetes takes over the management of applications

Everything that Kubernetes does and all the advantages it brings requires a
longer explanation, which we’ll discuss later. Before we do that, it might
help you to know how it all began and where the Kubernetes project
currently stands.

1.1.2 About the Kubernetes project

Kubernetes was originally developed by Google. Google has practically
always run applications in containers. As early as 2014, it was reported that
they start two billion containers every week. That’s over 3,000 containers
per second, and the figure is much higher today. They run these containers
on thousands of computers distributed across dozens of data centers
around the world. Now imagine doing all this manually. It’s clear that you
need automation, and at this massive scale, it better be perfect.

About Borg and Omega - the predecessors of Kubernetes

The sheer scale of Google’s workload has forced them to develop solutions
to make the development and management of thousands of software
components manageable and cost-effective. Over the years, Google
developed an internal system called Borg (and later a new system called
Omega) that helped both application developers and operators manage
these thousands of applications and services.

In addition to simplifying development and management, these systems
have also helped them to achieve better utilization of their infrastructure.
This is important in any organization, but when you operate hundreds of
thousands of machines, even tiny improvements in utilization mean savings
in the millions, so the incentives for developing such a system are clear.

Note

Data on Google’s energy use suggests that they run around 900,000
servers.

Over time, your infrastructure grows and evolves. Every new data center is
state-of-the-art. Its infrastructure differs from those built in the past.
Despite the differences, the deployment of applications in one data center
should not differ from deployment in another data center. This is especially
important when you deploy your application across multiple zones or
regions to reduce the likelihood that a regional failure will cause application
downtime. To do this effectively, it’s worth having a consistent method for
deploying your applications.

About Kubernetes - the open-source project - and commercial products

derived from it

Based on the experience they gained while developing Borg, Omega and
other internal systems, in 2014 Google introduced Kubernetes, an
opensource project that can now be used and further improved by
everyone.

Figure 1.5 The origins and state of the Kubernetes open-source project

As soon as Kubernetes was announced, long before version 1.0 was
officially released, other companies, such as Red Hat, who has always been
at the forefront of open-source software, quickly stepped on board and
helped develop the project. It eventually grew far beyond the expectations
of its founders, and today is arguably one of the world’s leading open-
source projects, with dozens of organizations and thousands of individuals
contributing to it.

Several companies are now offering enterprise-quality Kubernetes
products that are built from the open-source project. These include Red
Hat OpenShift, Pivotal Container Service, Rancher and many others.

How Kubernetes grew a whole new cloud-native eco-system

Kubernetes has also spawned many other related open-source projects,
most of which are now under the umbrella of the Cloud Native Computing
Foundation (CNCF), which is part of the Linux Foundation.

CNCF organizes several KubeCon - CloudNativeCon conferences per year -
in North America, Europe and China. In 2019, the total number of
attendees exceeded 23,000, with KubeCon North America reaching an
overwhelming number of 12,000 participants. These figures show that
Kubernetes has had an incredibly positive impact on the way companies
around the world deploy applications today. It wouldn’t have been so
widely adopted if that wasn’t the case.

1.1.3 Understanding why Kubernetes is so popular

In recent years, the way we develop applications has changed considerably.
This has led to the development of new tools like Kubernetes, which in turn
have fed back and fuelled further changes in application architecture and
the way we develop them. Let’s look at concrete examples of this.

Automating the management of microservices

In the past, most applications were large monoliths. The components of the
application were tightly coupled, and they all ran in a single computer
process. The application was developed as a unit by a large team of
developers and the deployment of the application was straightforward. You
installed it on a powerful computer and provided the little configuration it
required. Scaling the application horizontally was rarely possible, so
whenever you needed to increase the capacity of the application, you had
to upgrade the hardware - in other words, scale the application vertically.

Then came the microservices paradigm. The monoliths were divided into
dozens, sometimes hundreds, of separate processes, as shown in the
following figure. This allowed organizations to divide their development
departments into smaller teams where each team developed only a part of
the entire system - just some of the microservices.

Figure 1.6 Comparing monolithic applications with microservices

Each microservice is now a separate application with its own development
and release cycle. The dependencies of different microservices will
inevitably diverge over time. One microservice requires one version of a
library, while another microservice requires another, possibly incompatible,
version of the same library. Running the two applications in the same
operating system becomes difficult.

Fortunately, containers alone solve this problem where each microservice
requires a different environment, but each microservice is now a separate
application that must be managed individually. The increased number of
applications makes this much more difficult.

Individual parts of the entire application no longer need to run on the same
computer, which makes it easier to scale the entire system, but also means
that the applications need to be configured to communicate with each
other. For systems with only a handful of components, this can usually be
done manually, but it’s now common to see deployments with well over a
hundred microservices.

When the system consists of many microservices, automated management
is crucial. Kubernetes provides this automation. The features it offers make
the task of managing hundreds of microservices almost trivial.

Bridging the dev and ops divide

Along with these changes in application architecture, we’ve also seen
changes in the way teams develop and run software. It used to be normal
for a development team to build the software in isolation and then throw
the finished product over the wall to the operations team, who would then
deploy it and manage it from there.

With the advent of the Dev-ops paradigm, the two teams now work much
more closely together throughout the entire life of the software product.
The development team is now much more involved in the daily
management of the deployed software. But that means that they now need
to know about the infrastructure on which it’s running.

As a software developer, your primary focus is on implementing the
business logic. You don’t want to deal with the details of the underlying
servers. Fortunately, Kubernetes hides these details.

Standardizing the cloud

Over the past decade or two, many organizations have moved their
software from local servers to the cloud. The benefits of this seem to have
outweighed the fear of being locked-in to a particular cloud provider, which
is caused by relying on the provider’s proprietary APIs to deploy and
manage applications.

Any company that wants to be able to move its applications from one
provider to another will have to make additional, initially unnecessary
efforts to abstract the infrastructure and APIs of the underlying cloud
provider from the applications. This requires resources that could
otherwise be focused on building the primary business logic.

Kubernetes has also helped in this respect. The popularity of Kubernetes
has forced all major cloud providers to integrate Kubernetes into their
offerings. Customers can now deploy applications to any cloud provider
through a standard set of APIs provided by Kubernetes.

Figure 1.7 Kubernetes has standardized how you deploy applications on cloud providers

If the application is built on the APIs of Kubernetes instead of directly on
the proprietary APIs of a specific cloud provider, it can be transferred
relatively easily to any other provider.

1.2 Understanding Kubernetes

The previous section explained the origins of Kubernetes and the reasons
for its wide adoption. In this section we’ll take a closer look at what exactly
Kubernetes is.

1.2.1 Understanding how Kubernetes transforms a computer

cluster

Let’s take a closer look at how the perception of the data center changes
when you deploy Kubernetes on your servers.

Kubernetes is like an operating system for computer clusters

One can imagine Kubernetes as an operating system for the cluster. The
next figure illustrates the analogies between an operating system running
on a computer and Kubernetes running on a cluster of computers.

Figure 1.8 Kubernetes is to a computer cluster what an Operating System is to a computer

Just as an operating system supports the basic functions of a computer,
such as scheduling processes onto its CPUs and acting as an interface
between the application and the computer’s hardware, Kubernetes
schedules the components of a distributed application onto individual
computers in the underlying computer cluster and acts as an interface
between the application and the cluster.

It frees application developers from the need to implement
infrastructurerelated mechanisms in their applications; instead, they rely
on Kubernetes to provide them. This includes things like:

service discovery - a mechanism that allows applications to find other
applications and use the services they provide, horizontal scaling -
replicating your application to adjust to fluctuations in load,
load-balancing - distributing load across all the application replicas,
self-healing - keeping the system healthy by automatically restarting
failed applications and moving them to healthy nodes after their

nodes fail,

 leader election - a mechanism that decides which instance of the
application should be active while the others remain idle but ready to
take over if the active instance fails.

By relying on Kubernetes to provide these features, application developers
can focus on implementing the core business logic instead of wasting time
integrating applications with the infrastructure.

How Kubernetes fits into a computer cluster

To get a concrete example of how Kubernetes is deployed onto a cluster of
computers, look at the following figure.

Figure 1.9 Computers in a Kubernetes cluster are divided into the Control Plane and the Workload

Plane

You start with a fleet of machines that you divide into two groups - the
master and the worker nodes. The master nodes will run the Kubernetes
Control Plane, which represents the brain of your system and controls the
cluster, while the rest will run your applications - your workloads - and will
therefore represent the Workload Plane.

Note

The Workload Plane is sometimes referred to as the Data Plane, but this
term could be confusing because the plane doesn’t host data but
applications. Don’t be confused by the term “plane” either - in this context
you can think of it as the “surface” the applications run on.

Non-production clusters can use a single master node, but highly available
clusters use at least three physical master nodes to host the Control Plane.
The number of worker nodes depends on the number of applications you’ll
deploy.

How all cluster nodes become one large deployment area

After Kubernetes is installed on the computers, you no longer need to think
about individual computers when deploying applications. Regardless of the
number of worker nodes in your cluster, they all become a single space
where you deploy your applications. You do this using the

Kubernetes API, which is provided by the Kubernetes Control Plane.

Figure 1.10 Kubernetes exposes the cluster as a uniform deployment area

When I say that all worker nodes become one space, I don’t want you to
think that you can deploy an extremely large application that is spread
across several small machines. Kubernetes doesn’t do magic tricks like this.
Each application must be small enough to fit on one of the worker nodes.

What I meant was that when deploying applications, it doesn’t matter
which worker node they end up on. Kubernetes may later even move the
application from one node to another. You may not even notice when that
happens, and you shouldn’t care.

1.2.2 The benefits of using Kubernetes

You’ve already learned why many organizations across the world have
welcomed Kubernetes into their data centers. Now, let’s take a closer look
at the specific benefits it brings to both development and IT operations
teams.

Self-service deployment of applications

Because Kubernetes presents all its worker nodes as a single deployment
surface, it no longer matters which node you deploy your application to.
This means that developers can now deploy applications on their own,
even if they don’t know anything about the number of nodes or the
characteristics of each node.

In the past, the system administrators were the ones who decided where
each application should be placed. This task is now left to Kubernetes. This
allows a developer to deploy applications without having to rely on other
people to do so. When a developer deploys an application,
Kubernetes chooses the best node on which to run the application based
on the resource requirements of the application and the resources
available on each node.

Reducing costs via better infrastructure utilization

If you don’t care which node your application lands on, it also means that
it can be moved to any other node at any time without you having to worry
about it. Kubernetes may need to do this to make room for a larger
application that someone wants to deploy. This ability to move applications
allows the applications to be packed tightly together so that the resources
of the nodes can be utilized in the best possible way.

Note

In chapter 17 you’ll learn more about how Kubernetes decides where to
place each application and how you can influence the decision.

Finding optimal combinations can be challenging and time consuming,
especially when the number of all possible options is huge, such as when
you have many application components and many server nodes on which
they can be deployed. Computers can perform this task much better and
faster than humans. Kubernetes does it very well. By combining different
applications on the same machines, Kubernetes improves the utilization of
your hardware infrastructure so you can run more applications on fewer
servers.

Automatically adjusting to changing load

Using Kubernetes to manage your deployed applications also means that
the operations team doesn’t have to constantly monitor the load of each
application to respond to sudden load peaks. Kubernetes takes care of this
also. It can monitor the resources consumed by each application and other

metrics and adjust the number of running instances of each application to
cope with increased load or resource usage.

When you run Kubernetes on cloud infrastructure, it can even increase the
size of your cluster by provisioning additional nodes through the cloud
provider’s API. This way, you never run out of space to run additional
instances of your applications.

Keeping applications running smoothly

Kubernetes also makes every effort to ensure that your applications run
smoothly. If your application crashes, Kubernetes will restart it
automatically. So even if you have a broken application that runs out of
memory after running for more than a few hours, Kubernetes will ensure
that your application continues to provide the service to its users by
automatically restarting it in this case.

Kubernetes is a self-healing system in that it deals with software errors like
the one just described, but it also handles hardware failures. As clusters
grow in size, the frequency of node failure also increases. For example, in a
cluster with one hundred nodes and a MTBF (mean-time-betweenfailure)
of 100 days for each node, you can expect one node to fail every day.

When a node fails, Kubernetes automatically moves applications to the
remaining healthy nodes. The operations team no longer needs to
manually move the application and can instead focus on repairing the node
itself and returning it to the pool of available hardware resources.

If your infrastructure has enough free resources to allow normal system
operation without the failed node, the operations team doesn’t even have
to react immediately to the failure. If it occurs in the middle of the night,
no one from the operations team even has to wake up. They can sleep
peacefully and deal with the failed node during regular working hours.

Simplifying application development

The improvements described in the previous section mainly concern
application deployment. But what about the process of application

development? Does Kubernetes bring anything to their table? It definitely
does.

As mentioned previously, Kubernetes offers infrastructure-related services
that would otherwise have to be implemented in your applications. This
includes the discovery of services and/or peers in a distributed application,
leader election, centralized application configuration and others.
Kubernetes provides this while keeping the application
Kubernetesagnostic, but when required, applications can also query the
Kubernetes API to obtain detailed information about their environment.
They can also use the API to change the environment.

1.2.3 The architecture of a Kubernetes cluster

As you’ve already learned, a Kubernetes cluster consists of nodes divided
into two groups:

 A set of master nodes that host the Control Plane components, which

are the brains of the system, since they control the entire cluster. A
set of worker nodes that form the Workload Plane, which is where your
workloads (or applications) run.

The following figure shows the two planes and the different nodes they
consist of.

Figure 1.11 The two planes that make up a Kubernetes cluster

The two planes, and hence the two types of nodes, run different

Kubernetes components. The next two sections of the book introduce
them and summarize their functions without going into details. These
components will be mentioned several times in the next part of the book
where I explain the fundamental concepts of Kubernetes. An in-depth look
at the components and their internals follows in the third part of the book.

Control Plane components

The Control Plane is what controls the cluster. It consists of several
components that run on a single master node or are replicated across
multiple master nodes to ensure high availability. The Control Plane’s
components are shown in the following figure. Figure 1.12 The components of the

Kubernetes Control Plane

These are the components and their functions:

 The Kubernetes API Server exposes the RESTful Kubernetes API.
Engineers using the cluster and other Kubernetes components create
objects via this API.

 The etcd distributed datastore persists the objects you create through
the API, since the API Server itself is stateless. The Server is the only
component that talks to etcd.
The Scheduler decides on which worker node each application
instance should run.
Controllers bring to life the objects you create through the API. Most

of them simply create other objects, but some also communicate with
external systems (for example, the cloud provider via its API).

The components of the Control Plane hold and control the state of the
cluster, but they don’t run your applications. This is done by the (worker)
nodes.

Worker node components

The worker nodes are the computers on which your applications run. They
form the cluster’s Workload Plane. In addition to applications, several
Kubernetes components also run on these nodes. They perform the task of
running, monitoring and providing connectivity between your applications.
They are shown in the following figure.

Figure 1.13 The Kubernetes components that run on each node

Each node runs the following set of components:

 The Kubelet, an agent that talks to the API server and manages the
applications running on its node. It reports the status of these
applications and the node via the API.

 The Container Runtime, which can be Docker or any other runtime
compatible with Kubernetes. It runs your applications in containers as
instructed by the Kubelet.

 The Kubernetes Service Proxy (Kube Proxy) load-balances network
traffic between applications. Its name suggests that traffic flows
through it, but that’s no longer the case. You’ll learn why in chapter
14.

Add-on components

Most Kubernetes clusters also contain several other components. This
includes a DNS server, network plugins, logging agents and many others.
They typically run on the worker nodes but can also be configured to run
on the master.

Gaining a deeper understanding of the architecture

For now, I only expect you to be vaguely familiar with the names of these
components and their function, as I’ll mention them many times
throughout the following chapters. You’ll learn snippets about them in
these chapters, but I’ll explain them in more detail in chapter 14.

I’m not a fan of explaining how things work until I first explain what
something does and teach you how to use it. It’s like learning to drive. You
don’t want to know what’s under the hood. At first, you just want to learn
how to get from point A to B. Only then will you be interested in how the
car makes this possible. Knowing what’s under the hood may one day help
you get your car moving again after it has broken down and you are
stranded on the side of the road. I hate to say it, but you’ll have many
moments like this when dealing with Kubernetes due to its sheer
complexity.

1.2.4 How Kubernetes runs an application

With a general overview of the components that make up Kubernetes, I can
finally explain how to deploy an application in Kubernetes.

Defining your application

Everything in Kubernetes is represented by an object. You create and
retrieve these objects via the Kubernetes API. Your application consists of
several types of these objects - one type represents the application
deployment as a whole, another represents a running instance of your
application, another represents the service provided by a set of these
instances and allows reaching them at a single IP address, and there are
many others.

All these types are explained in detail in the second part of the book. At the
moment, it’s enough to know that you define your application through
several types of objects. These objects are usually defined in one or more
manifest files in either YAML or JSON format.

Definition

YAML was initially said to mean “Yet Another Markup Language”, but it was
latter changed to the recursive acronym “YAML Ain’t Markup Language”.
It’s one of the ways to serialize an object into a humanreadable text file.

Definition

JSON is short for JavaScript Object Notation. It’s a different way of
serializing an object, but more suitable for exchanging data between
applications.

The following figure shows an example of deploying an application by
creating a manifest with two deployments exposed using two services.

Figure 1.14 Deploying an application to Kubernetes

These actions take place when you deploy the application:

1. You submit the application manifest to the Kubernetes API. The API
Server writes the objects defined in the manifest to etcd.

2. A controller notices the newly created objects and creates several new
objects - one for each application instance.

3. The Scheduler assigns a node to each instance.

4. The Kubelet notices that an instance is assigned to the Kubelet’s node.
It runs the application instance via the Container Runtime.

5. The Kube Proxy notices that the application instances are ready to
accept connections from clients and configures a load balancer for
them.

6. The Kubelets and the Controllers monitor the system and keep the
applications running.

The procedure is explained in more detail in the following sections, but the
complete explanation is given in chapter 14, after you have familiarized
yourself with all the objects and controllers involved.

Submitting the application to the API

After you’ve created your YAML or JSON file(s), you submit the file to the
API, usually via the Kubernetes command-line tool called kubectl.

Note

Kubectl is pronounced kube-control, but the softer souls in the community
prefer to call it kube-cuddle. Some refer to it as kube-C-T-L.

Kubectl splits the file into individual objects and creates each of them by
sending an HTTP PUT or POST request to the API, as is usually the case with
RESTful APIs. The API Server validates the objects and stores them in the
etcd datastore. In addition, it notifies all interested components that these
objects have been created. Controllers, which are explained next, are one
of these components.

About the controllers

Most object types have an associated controller. A controller is interested
in a particular object type. It waits for the API server to notify it that a new
object has been created, and then performs operations to bring that object
to life. Typically, the controller just creates other objects via the same
Kubernetes API. For example, the controller responsible for application
deployments creates one or more objects that represent individual
instances of the application. The number of objects created by the
controller depends on the number of replicas specified in the application
deployment object.

About the Scheduler

The scheduler is a special type of controller, whose only task is to schedule
application instances onto worker nodes. It selects the best worker node

for each new application instance object and assigns it to the instance - by
modifying the object via the API.

About the Kubelet and the Container Runtime

The Kubelet that runs on each worker node is also a type of controller. Its
task is to wait for application instances to be assigned to the node on which
it is located and run the application. This is done by instructing the
Container Runtime to start the application’s container.

About the Kube Proxy

Because an application deployment can consist of multiple application
instances, a load balancer is required to expose them at a single IP address.
The Kube Proxy, another controller running alongside the Kubelet, is
responsible for setting up the load balancer.

Keeping the applications healthy

Once the application is up and running, the Kubelet keeps the application
healthy by restarting it when it terminates. It also reports the status of the
application by updating the object that represents the application instance.
The other controllers monitor these objects and ensure that applications
are moved to healthy nodes if their nodes fail.

You’re now roughly familiar with the architecture and functionality of
Kubernetes. You don’t need to understand or remember all the details at
this moment, because internalizing this information will be easier when
you learn about each individual object types and the controllers that bring
them to life in the second part of the book.

1.3 Introducing Kubernetes into your

organization

To close this chapter, let’s see what options are available to you if you
decide to introduce Kubernetes in your own IT environment.

1.3.1 Running Kubernetes on-premises and in the cloud

If you want to run your applications on Kubernetes, you have to decide
whether you want to run them locally, in your organization’s own
infrastructure (on-premises) or with one of the major cloud providers, or
perhaps both - in a hybrid cloud solution.

Running Kubernetes on-premises

Running Kubernetes on your own infrastructure may be your only option if
regulations require you to run applications on site. This usually means that
you’ll have to manage Kubernetes yourself, but we’ll come to that later.

Kubernetes can run directly on your bare-metal machines or in virtual
machines running in your data center. In either case, you won’t be able to
scale your cluster as easily as when you run it in virtual machines provided
by a cloud provider.

Deploying Kubernetes in the cloud

If you have no on-premises infrastructure, you have no choice but to run
Kubernetes in the cloud. This has the advantage that you can scale your
cluster at any time at short notice if required. As mentioned earlier,
Kubernetes itself can ask the cloud provider to provision additional virtual
machines when the current size of the cluster is no longer sufficient to run
all the applications you want to deploy.

When the number of workloads decreases and some worker nodes are left
without running workloads, Kubernetes can ask the cloud provider to
destroy the virtual machines of these nodes to reduce your operational
costs. This elasticity of the cluster is certainly one of the main benefits of
running Kubernetes in the cloud.

Using a hybrid cloud solution

A more complex option is to run Kubernetes on-premises, but also allow it
to spill over into the cloud. It’s possible to configure Kubernetes to
provision additional nodes in the cloud if you exceed the capacity of your

own data center. This way, you get the best of both worlds. Most of the
time, your applications run locally without the cost of virtual machine
rental, but in short periods of peak load that may occur only a few times a
year, your applications can handle the extra load by using the additional
resources in the cloud.

If your use-case requires it, you can also run a Kubernetes cluster across
multiple cloud providers or a combination of any of the options mentioned.
This can be done using a single control plane or one control plane in each
location.

1.3.2 To manage or not to manage Kubernetes yourself

If you are considering introducing Kubernetes in your organization, the
most important question you need to answer is whether you’ll manage
Kubernetes yourself or use a Kubernetes-as-a-Service type offering where
someone else manages it for you.

Managing Kubernetes yourself

If you already run applications on-premises and have enough hardware to
run a production-ready Kubernetes cluster, your first instinct is probably to
deploy and manage it yourself. If you ask anyone in the Kubernetes
community if this is a good idea, you’ll usually get a very definite “no”.

Figure 1.14 was a very simplified representation of what happens in a
Kubernetes cluster when you deploy an application. Even that figure should
have scared you. Kubernetes brings with it an enormous amount of
additional complexity. Anyone who wants to run a Kubernetes cluster must
be intimately familiar with its inner workings.

The management of production-ready Kubernetes clusters is a multibillion-
dollar industry. Before you decide to manage one yourself, it’s essential
that you consult with engineers who have already done it to learn about
the issues most teams run into. If you don’t, you may be setting yourself up
for failure. On the other hand, trying out Kubernetes for nonproduction
use-cases or using a managed Kubernetes cluster is much less problematic.

Using a managed Kubernetes cluster in the cloud

Using Kubernetes is ten times easier than managing it. Most major cloud
providers now offer Kubernetes-as-a-Service. They take care of managing
Kubernetes and its components while you simply use the Kubernetes API
like any of the other APIs the cloud provider offers.

The top managed Kubernetes offerings include the following:

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (EKS)

IBM Cloud Kubernetes Service

Red Hat OpenShift Online and Dedicated

VMware Cloud PKS

Alibaba Cloud Container Service for Kubernetes (ACK)

The first half of this book focuses on just using Kubernetes. You’ll run the
exercises in a local development cluster and on a managed GKE cluster, as
I find it’s the easiest to use and offers the best user experience. The second
part of the book gives you a solid foundation for managing Kubernetes, but
to truly master it, you’ll need to gain additional experience.

1.3.3 Using vanilla or extended Kubernetes

The final question is whether to use a vanilla open-source version of
Kubernetes or an extended, enterprise-quality Kubernetes product.

Using a vanilla version of Kubernetes

The open-source version of Kubernetes is maintained by the community
and represents the cutting edge of Kubernetes development. This also
means that it may not be as stable as the other options. It may also lack
good security defaults. Deploying the vanilla version requires a lot of fine
tuning to set everything up for production use.

Using enterprise-grade Kubernetes distributions

A better option for using Kubernetes in production is to use an
enterprisequality Kubernetes distribution such as OpenShift or Rancher. In

addition to the increased security and performance provided by better
defaults, they offer additional object types in addition to those provided in
the upstream Kubernetes API. For example, vanilla Kubernetes does not
contain object types that represent cluster users, whereas commercial
distributions do. They also provide additional software tools for deploying
and managing well-known third-party applications on Kubernetes.

Of course, extending and hardening Kubernetes takes time, so these
commercial Kubernetes distributions usually lag one or two versions
behind the upstream version of Kubernetes. It’s not as bad as it sounds.
The benefits usually outweigh the disadvantages.

1.3.4 Should you even use Kubernetes?

I hope this chapter has made you excited about Kubernetes and you can’t
wait to squeeze it into your IT stack. But to close this chapter properly, we
need to say a word or two about when introducing Kubernetes is not a good
idea.

Do your workloads require automated management?

The first thing you need to be honest about is whether you need to
automate the management of your applications at all. If your application is
a large monolith, you definitely don’t need Kubernetes.

Even if you deploy microservices, using Kubernetes may not be the best
option, especially if the number of your microservices is very small. It’s
difficult to provide an exact number when the scales tip over, since other
factors also influence the decision. But if your system consists of less than
five microservices, throwing Kubernetes into the mix is probably not a good
idea. If your system has more than twenty microservices, you will most
likely benefit from the integration of Kubernetes. If the number of your
microservices falls somewhere in between, other factors, such as the ones
described next, should be considered.

Can you afford to invest your engineers’ time into learning Kubernetes?

Kubernetes is designed to allow applications to run without them knowing
that they are running in Kubernetes. While the applications themselves
don’t need to be modified to run in Kubernetes, development engineers
will inevitably spend a lot of time learning how to use Kubernetes, even
though the operators are the only ones that actually need that knowledge.

It would be hard to tell your teams that you’re switching to Kubernetes and
expect only the operations team to start exploring it. Developers like shiny
new things. At the time of writing, Kubernetes is still a very shiny thing.

Are you prepared for increased costs in the interim?

While Kubernetes reduces long-term operational costs, introducing
Kubernetes in your organization initially involves increased costs for
training, hiring new engineers, building and purchasing new tools and
possibly additional hardware. Kubernetes requires additional computing
resources in addition to the resources that the applications use.

Don’t believe the hype

Although Kubernetes has been around for several years at the time of
writing this book, I can’t say that the hype phase is over. The initial
excitement has just begun to calm down, but many engineers may still be
unable to make rational decisions about whether the integration of
Kubernetes is as necessary as it seems.

1.4 Summary

In this introductory chapter, you’ve learned that:

 Kubernetes is Greek for helmsman. As a ship’s captain oversees the ship
while the helmsman steers it, you oversee your computer cluster,
while Kubernetes performs the day-to-day management tasks.
Kubernetes is pronounced koo-ber-netties. Kubectl, the Kubernetes
command-line tool, is pronounced kube-control.
Kubernetes is an open-source project built upon Google’s vast

experience in running applications on a global scale. Thousands of
individuals now contribute to it.

 Kubernetes uses a declarative model to describe application
deployments. After you provide a description of your application to
Kubernetes, it brings it to life.

 Kubernetes is like an operating system for the cluster. It abstracts the
infrastructure and presents all computers in a data center as one large,
contiguous deployment area.

 Microservice-based applications are more difficult to manage than
monolithic applications. The more microservices you have, the more
you need to automate their management with a system like
Kubernetes.

 Kubernetes helps both development and operations teams to do what
they do best. It frees them from mundane tasks and introduces a
standard way of deploying applications both on-premises and in any
cloud.

 Using Kubernetes allows developers to deploy applications without the
help of system administrators. It reduces operational costs through
better utilization of existing hardware, automatically adjusts your
system to load fluctuations, and heals itself and the applications
running on it.

 A Kubernetes cluster consists of master and worker nodes. The master
nodes run the Control Plane, which controls the entire cluster, while
the worker nodes run the deployed applications or workloads, and
therefore represent the Workload Plane.

 Using Kubernetes is simple, but managing it is hard. An inexperienced
team should use a Kubernetes-as-a-Service offering instead of
deploying Kubernetes by itself.

So far, you’ve only observed the ship from the pier. It’s time to come
aboard. But before you leave the docks, you should inspect the shipping
containers it’s carrying. You’ll do this next.

2 Understanding containers
This chapter covers

Understanding what a container is

Differences between containers and virtual machines

Creating, running, and sharing a container image with Docker

Linux kernel features that make containers possible

Kubernetes primarily manages applications that run in containers - so
before you start exploring Kubernetes, you need to have a good
understanding of what a container is. This chapter explains the basics of
Linux containers that a typical Kubernetes user needs to know.

2.1 Introducing containers

In Chapter 1 you learned how different microservices running in the same
operating system may require different, potentially conflicting versions of
dynamically linked libraries or have different environment requirements.

When a system consists of a small number of applications, it’s okay to
assign a dedicated virtual machine to each application and run each in its
own operating system. But as the microservices become smaller and their
numbers start to grow, you may not be able to afford to give each one its
own VM if you want to keep your hardware costs low and not waste
resources.

It’s not just a matter of wasting hardware resources - each VM typically
needs to be individually configured and managed, which means that
running higher numbers of VMs also results in higher staffing requirements
and the need for a better, often more complicated automation system. Due
to the shift to microservice architectures, where systems consist of
hundreds of deployed application instances, an alternative to VMs was
needed. Containers are that alternative.

2.1.1 Comparing containers to virtual machines

Instead of using virtual machines to isolate the environments of individual
microservices (or software processes in general), most development and
operations teams now prefer to use containers. They allow you to run
multiple services on the same host computer, while keeping them isolated
from each other. Like VMs, but with much less overhead.

Unlike VMs, which each run a separate operating system with several
system processes, a process running in a container runs within the existing
host operating system. Because there is only one operating system, no
duplicate system processes exist. Although all the application processes run
in the same operating system, their environments are isolated, though not
as well as when you run them in separate VMs. To the process in the
container, this isolation makes it look like no other processes exist on the
computer. You’ll learn how this is possible in the next few sections, but first
let’s dive deeper into the differences between containers and virtual
machines.

Comparing the overhead of containers and virtual machines

Compared to VMs, containers are much lighter, because they don’t require
a separate resource pool or any additional OS-level processes. While each
VM usually runs its own set of system processes, which requires additional
computing resources in addition to those consumed by the user
application’s own process, a container is nothing more than an isolated
process running in the existing host OS that consumes only the resources
the app consumes. They have virtually no overhead.

Figure 2.1 shows two bare metal computers, one running two virtual
machines, and the other running containers instead. The latter has space
for additional containers, as it runs only one operating system, while the
first runs three – one host and two guest OSes.

Figure 2.1 Using VMs to isolate groups of applications vs. isolating individual apps with containers

Because of the resource overhead of VMs, you often group multiple
applications into each VM. You may not be able to afford dedicating a
whole VM to each app. But containers introduce no overhead, which
means you can afford to create a separate container for each application.
In fact, you should never run multiple applications in the same container,
as this makes managing the processes in the container much more difficult.
Moreover, all existing software dealing with containers, including
Kubernetes itself, is designed under the premise that there’s only one
application in a container. But as you’ll learn in the next chapter,
Kubernetes provides a way to run related applications together, yet still
keep them in separate containers.

Comparing the start-up time of containers and virtual machines

In addition to the lower runtime overhead, containers also start the
application faster, because only the application process itself needs to be
started. No additional system processes need to be started first, as is the
case when booting up a new virtual machine.

Comparing the isolation of containers and virtual machines

You’ll agree that containers are clearly better when it comes to the use of
resources, but there’s also a disadvantage. When you run applications in
virtual machines, each VM runs its own operating system and kernel.

Underneath those VMs is the hypervisor (and possibly an additional
operating system), which splits the physical hardware resources into
smaller sets of virtual resources that the operating system in each VM can
use. As figure 2.2 shows, applications running in these VMs make system
calls (sys-calls) to the guest OS kernel in the VM, and the machine
instructions that the kernel then executes on the virtual CPUs are then
forwarded to the host’s physical CPU via the hypervisor.

Figure 2.2 How apps use the hardware when running in a VM vs. in a container

Note

Two types of hypervisors exist. Type 1 hypervisors don’t require running a
host OS, while type 2 hypervisors do.

Containers, on the other hand, all make system calls on the single kernel
running in the host OS. This single kernel is the only one that executes
instructions on the host’s CPU. The CPU doesn’t need to handle any kind of
virtualization the way it does with VMs.

Examine the following figure to see the difference between running three
applications on bare metal, running them in two separate virtual machines,
or running them in three containers.

Figure 2.3 The difference between running applications on bare metal, in virtual machines, and in

containers

In the first case, all three applications use the same kernel and aren’t
isolated at all. In the second case, applications A and B run in the same VM
and thus share the kernel, while application C is completely isolated from
the other two, since it uses its own kernel. It only shares the hardware with
the first two.

The third case shows the same three applications running in containers.
Although they all use the same kernel, they are isolated from each other
and completely unaware of the others’ existence. The isolation is provided
by the kernel itself. Each application sees only a part of the physical
hardware and sees itself as the only process running in the OS, although
they all run in the same OS.

Understanding the security-implications of container isolation

The main advantage of using virtual machines over containers is the
complete isolation they provide, since each VM has its own Linux kernel,
while containers all use the same kernel. This can clearly pose a security
risk. If there’s a bug in the kernel, an application in one container might use
it to read the memory of applications in other containers. If the apps run in
different VMs and therefore share only the hardware, the probability of
such attacks is much lower. Of course, complete isolation is only achieved
by running applications on separate physical machines.

Additionally, containers share memory space, whereas each VM uses its
own chunk of memory. Therefore, if you don’t limit the amount of memory
that a container can use, this could cause other containers to run out of
memory or cause their data to be swapped out to disk.

Note

This can’t happen in Kubernetes, because it requires that swap is disabled
on all the nodes.

Understanding what enables containers and what enables virtual

machines

While virtual machines are enabled through virtualization support in the
CPU and by virtualization software on the host, containers are enabled by
the Linux kernel itself. You’ll learn about container technologies later when
you can try them out for yourself. You’ll need to have Docker installed for
that, so let’s learn how it fits into the container story.

2.1.2 Introducing the Docker container platform

While container technologies have existed for a long time, they only
became widely known with the rise of Docker. Docker was the first
container system that made them easily portable across different
computers. It simplified the process of packaging up the application and all
its libraries and other dependencies - even the entire OS file system - into
a simple, portable package that can be used to deploy the application on
any computer running Docker.

Introducing containers, images and registries

Docker is a platform for packaging, distributing and running applications.
As mentioned earlier, it allows you to package your application along with
its entire environment. This can be just a few dynamically linked libraries
required by the app, or all the files that are usually shipped with an
operating system. Docker allows you to distribute this package via a public
repository to any other Docker-enabled computer.

Figure 2.4 The three main Docker concepts are images, registries and containers

Figure 2.4 shows three main Docker concepts that appear in the process
I’ve just described. Here’s what each of them is:

 Images—A container image is something you package your application
and its environment into. Like a zip file or a tarball. It contains the
whole filesystem that the application will use and additional
metadata, such as the path to the executable file to run when the

image is executed, the ports the application listens on, and other
information about the image.

 Registries—A registry is a repository of container images that enables
the exchange of images between different people and computers.
After you build your image, you can either run it on the same
computer, or push (upload) the image to a registry and then pull
(download) it to another computer. Certain registries are public,
allowing anyone to pull images from it, while others are private and
only accessible to individuals, organizations or computers that have
the required authentication credentials.

 Containers—A container is instantiated from a container image. A
running container is a normal process running in the host operating
system, but its environment is isolated from that of the host and the
environments of other processes. The file system of the container
originates from the container image, but additional file systems can
also be mounted into the container. A container is usually
resourcerestricted, meaning it can only access and use the amount of
resources such as CPU and memory that have been allocated to it.

Building, distributing, and running a container image

To understand how containers, images and registries relate to each other,
let’s look at how to build a container image, distribute it through a registry
and create a running container from the image. These three processes are
shown in figures 2.5 to 2.7.

Figure 2.5 Building a container image

As shown in figure 2.5, the developer first builds an image, and then pushes
it to a registry, as shown in figure 2.6. The image is now available to anyone
who can access the registry.

Figure 2.6 Uploading a container image to a registry

As the next figure shows, another person can now pull the image to any
other computer running Docker and run it. Docker creates an isolated
container based on the image and invokes the executable file specified in
the image.

Figure 2.7 Running a container on a different computer

Running the application on any computer is made possible by the fact that
the environment of the application is decoupled from the environment of
the host.

Understanding the environment that the application sees

When you run an application in a container, it sees exactly the file system
content you bundled into the container image, as well as any additional file
systems you mount into the container. The application sees the same files
whether it’s running on your laptop or a full-fledged production server,
even if the production server uses a completely different Linux distribution.
The application typically has no access to the files in the host’s operating
system, so it doesn’t matter if the server has a completely different set of
installed libraries than your development computer.

For example, if you package your application with the files of the entire Red
Hat Enterprise Linux (RHEL) operating system and then run it, the
application will think it’s running inside RHEL, whether you run it on your
Fedora-based or a Debian-based computer. The Linux distribution installed
on the host is irrelevant. The only thing that might be important is the
kernel version and the kernel modules it loads. Later, I’ll explain why.

This is similar to creating a VM image by creating a new VM, installing an
operating system and your app in it, and then distributing the whole VM
image so that other people can run it on different hosts. Docker achieves
the same effect, but instead of using VMs for app isolation, it uses Linux
container technologies to achieve (almost) the same level of isolation.

Understanding image layers

Unlike virtual machine images, which are big blobs of the entire filesystem
required by the operating system installed in the VM, container images
consist of layers that are usually much smaller. These layers can be shared
and reused across multiple images. This means that only certain layers of
an image need to be downloaded if the rest were already downloaded to
the host as part of another image containing the same layers.

Layers make image distribution very efficient but also help to reduce the
storage footprint of images. Docker stores each layer only once. As you can
see in the following figure, two containers created from two images that
contain the same layers use the same files.

Figure 2.8 Containers can share image layers

The figure shows that containers A and B share an image layer, which
means that applications A and B read some of the same files. In addition,
they also share the underlying layer with container C. But if all three
containers have access to the same files, how can they be completely
isolated from each other? Are changes that application A makes to a file
stored in the shared layer not visible to application B? They aren’t. Here’s
why.

The filesystems are isolated by the Copy-on-Write (CoW) mechanism. The
filesystem of a container consists of read-only layers from the container
image and an additional read/write layer stacked on top. When an
application running in container A changes a file in one of the read-only
layers, the entire file is copied into the container’s read/write layer and the
file contents are changed there. Since each container has its own writable
layer, changes to shared files are not visible in any other container.

When you delete a file, it is only marked as deleted in the read/write layer,
but it’s still present in one or more of the layers below. What follows is that
deleting files never reduces the size of the image.

WARNING

Even seemingly harmless operations such as changing permissions or
ownership of a file result in a new copy of the entire file being created in
the read/write layer. If you perform this type of operation on a large file or
many files, the image size may swell significantly.

Understanding the portability limitations of container images

In theory, a Docker-based container image can be run on any Linux
computer running Docker, but one small caveat exists, because containers
don’t have their own kernel. If a containerized application requires a
particular kernel version, it may not work on every computer. If a computer
is running a different version of the Linux kernel or doesn’t load the
required kernel modules, the app can’t run on it. This scenario is illustrated
in the following figure.

Figure 2.9 If a container requires specific kernel features or modules, it may not work everywhere

Container B requires a specific kernel module to run properly. This module
is loaded in the kernel in the first computer, but not in the second. You can
run the container image on the second computer, but it will break when it
tries to use the missing module.

And it’s not just about the kernel and its modules. It should also be clear
that a containerized app built for a specific hardware architecture can only
run on computers with the same architecture. You can’t put an application
compiled for the x86 CPU architecture into a container and expect to run it

on an ARM-based computer just because Docker is available there. For this
you would need a VM to emulate the x86 architecture.

2.1.3 Installing Docker and running a Hello World container

You should now have a basic understanding of what a container is, so let’s
use Docker to run one. You’ll install Docker and run a Hello World container.

Installing Docker

Ideally, you’ll install Docker directly on a Linux computer, so you won’t have
to deal with the additional complexity of running containers inside a VM
running within your host OS. But, if you’re using macOS or Windows and
don’t know how to set up a Linux VM, the Docker Desktop application will
set it up for you. The Docker command-line (CLI) tool that you’ll use to run
containers will be installed in your host OS, but the Docker daemon will run
inside the VM, as will all the containers it creates.

The Docker Platform consists of many components, but you only need to
install Docker Engine to run containers. If you use macOS or Windows,
install Docker Desktop. For details, follow the instructions at
http://docs.docker.com/install.

Note

Docker Desktop for Windows can run either Windows or Linux containers.
Make sure that you configure it to use Linux containers, as all the examples
in this book assume that’s the case.

Running a Hello World container

After the installation is complete, you use the docker CLI tool to run

Docker commands. Let’s try pulling and running an existing image from
Docker Hub, the public image registry that contains ready-to-use container
images for many well-known software packages. One of them is the busybox
image, which you’ll use to run a simple echo "Hello world" command in your
first container.

