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Preface 

One goal of this Preface can be achieved right away. You need to know about the video 

lectures for MIT’s Linear Algebra course Math 18.06. Those videos go with this book, 

and they are part of MIT’s OpenCourseWare. The direct links to linear algebra are 

https://ocw.mit.edu/courses/1 8-06-linear-algebra-spring-2010/ 

https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/ 

On YouTube those lectures are at https://ocw.mit.edu/1806videos and /1806scvideos 

The first link brings the original lectures from the dawn of OpenCourseWare. Problem 

solutions by graduate students (really good) and also a short introduction to linear algebra 

were added to the new 2011 lectures. And the course today has a new start—the crucial 

ideas of linear independence and the column space of a matrix have moved near the front. 

I would like to tell you about those ideas in this Preface. 

Start with two column vectors a; and a;. They can have three components each, 

so they correspond to points in 3-dimensional space. The picture needs a center point 

which locates the zero vector: 
- - p— - - - 

2 1 0 

a=\|3 a=| 4 zero vector = | O 

1 |2 | 0 

The vectors are drawn on this 2-dimensional page. But we all have practice in visualizing 

three-dimensional pictures. Here are a,. a2, 2a;. and the vector sum a; + a,. 
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That picture illustrated two basic operations—adding vectors a; + a2 and multiplying 
a vector by 2. Combining those operations produced a “linear combination” 2a, + a2 : 

Linear combination = ca; + da; for any numbers c and d 

Those numbers ¢ and d can be negative. In that case ca, and da, will reverse their direc- 

tions : they go right to left. Also very important, ¢ and d can involve fractions. Here is a 
picture with a lot more linear combinations. Eventually we want all vectors ca, + da;. 

2a a 
a; + a; 1+ a2 

—a) — az 

Here is the key ! The combinations ca; + daj fill a whole plane. It is an infinite plane 

in 3-dimensional space. By using more and more fractions and decimals ¢ and d, we fill in 

a complete plane. Every point on the plane is a combination of a, and a. 
Now comes a fundamental idea in linear algebra: a matrix. The matrix A holds 

n column vectors a,, a,, . . ., @,. At this point our matrix has two columns a; and a2, and 

those are vectors in 3-dimensional space. So the matrix has three rows and two columns. 

3 by 2 matrix [ 1 [2 1] 
m = 3 rows A=]a a2 | =]|3 4 

n = 2 columns I ] 1 2 

The combinations of those two columns produced a plane in three-dimensional space. 

There is a natural name for that plane. It is the column space of the matrix. For any A, 
the column space of A contains all combinations of the columns. 

Here are the four ideas introduced so far. You will see them all in Chapter 1. 

1. Column vectors a; and a, in three dimensions 

2. Linear combinations ca; + da; of those vectors 

3. The matrix A contains the columns a; and a; 

4. Column space of the matrix = all linear combinations of the columns = plane
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Now we include 2 more columns in A 2 1 3 0 1 
. A=|13 4 7 0 

The 4 columns are in 3-dimensional space 1 2 3 -1 

Linear algebra aims for an understanding of every column space. Let me try this one. 

Columns 1 and 2 produce the same plane as before (same a; and a;) 

Column 3 contributes nothing new because a3 is on that plane: a3 = a; + a2 

Column 4 is not on the plane : Adding in c4a4 raises or lowers the plane 

The column space of this matrix A is the whole 3-dimensional space : all points ! 

You see how we go a column at a time, left to right. Each column can be independent 
of the previous columns or it can be a combination of those columns. To produce every 

point in 3-dimensional space, you need three independent columns. 

Matrix Multiplication A = CR 

Using the words “linear combination” and “independent columns™ gives a good picture 

of that 3 by 4 matrix A. Column 3 is a linear combination: column 1 4 column 2. 
Columns 1, 2,4 are independent. The only way to produce the zero vector as a 

combination of the independent columns 1.2. 4 is to multiply all those columns by zero. 

We are so close to a key idea of Chapter 1 that I have to go on. Matrix multiplication 

is the perfect way to write down what we know. From the 4 columns of 4 we pick out the 
independent columns a;, @a3. a4 in the column matrix C. Every column of R tells us the 

combination of a1, a2, a4 in C that produces a column of A. A equals C times R : 

p— - - - P - 

2 1 3 0 2 1 0 1 0 1 0 

A=| 3 4 7 0|l=1]3 4 0 0 1 1 0 |=CR 

1 2 3 -1 1 2 -1]1060 0 0 1 

Column 3 of A is dependent on columns 1 and 2 of A4, and column 3 of R shows how. 
Add the independent columns 1 and 2 of C' to get column a3z = a; + a2 = (3.7.3) of A. 

Matrix multiplication : Each column j of C R is C times column j of R 

Section 1.3 of the book will multiply a matrix times a vector (two ways). Then Section 
1.4 will multiply a matrix times a matrix. This is the key operation of linear algebra. 
It is important that there is more than one good way to do this multiplication. 

I am going to stop here. The normal purpose of the Preface is to tell you about the 
big picture. The next pages will give you two ways to organize this subject—especially 

the first seven chapters that more than fill up most linear algebra courses. Then come 
optional chapters, leading to the most active topic in applications today : deep learning.
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The Four Fundamental Subspaces 

You have just seen how the course begins—with the columns of a matrix A. There were 
two key steps. One step was to take all combinations ca; + da; + eas + fay of the 

columns. This led to the column space of A. The other step was to factor the matrix into 
C times R. That matrix C holds a full set of independent columns. 

I fully recognize that this is only the Preface to the book. You have had zero practice 
with the column space of a matrix (and even less practice with C' and R). But the good 

thing is : Those are the right directions to start. Eventually, every matrix will lead to four 

fundamental spaces. Together with the column space of A comes the row space—all 

combinations of the rows. When we take all combinations of the n columns and all 

combinations of the m rows—those combinations fill up “spaces” of vectors. 

The other two subspaces complete the picture. Suppose the row space is a plane in 

three dimensions. Then there is one special direction in the 3D picture—that direction is 

perpendicular to the row space. That perpendicular line is the nullspace of the matrix. 

We will see that the vectors in the nullspace (perpendicular to all the rows) solve Az = 0: 

the most basic of linear equations. 

And if vectors perpendicular to all the rows are important, so are the vectors 

perpendicular to all the columns. Here is the picture of the Four Fundamental Subspaces. 

Column space Row space 

Dimension r Dimension r 

combinations 

of the columns 

combinations 

of the rows 

The Big Picture 
(m rows and n columns) @ m dimensional 

space 
n dimensional 

space 

to the columns perpendicular 

to the rows 
Nullspace of AT Nullspace of A 
dimensionm — r dimensionn — r 

The Four Fundamental Subspaces: An m by n matrix with » independent columns. 

This picture of four subspaces comes in Chapter 3. The idea of perpendicular spaces is 

developed in Chapter 4. And special “basis vectors” for all four subspaces are discovered 

in Chapter 7. That step is the final piece in the Fundamental Theorem of Linear Algebra. 

The theorem includes an amazing fact about any matrix, square or rectangular: 

The number of independent columns equals the number of independent rows.
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Five Factorizations of a Matrix 

Here are the organizing principles of linear algebra. When our matrix has a special property, 

these factorizations will show it. Chapter after chapter, they express the key idea in a direct 

and useful way. 

The usefulness increases as you go down the list. Orthogonal matrices are the win- 

ners in the end, because their columns are perpendicular unit vectors. That is perfection. 

cos® —siné 
2 by 2 Orthogonal Matrix = [ sin 0 cos 0 ] = Rotation by Angle 6 

Here are the five factorizations from Chapters 1,2,4,6,7: 

A=CR = R combines independent columns in C to give all columns of A 

A=LU = Lower triangular L times Upper triangular U 

A=QR = Orthogonal matrix Q times Upper triangular R 

S = QAQT = (Orthogonal Q) (Eigenvalues in A) (Orthogonal QY 

A =UXVT = (Orthogonal U) (Singular values in ) (Orthogonal V' T) J
 

O
 

=
 

N
 

=
 

May I call your attention to the last one ? It is the Singular Value Decomposition (SVD). 

It applies to every matrix A. Those factors U and V have perpendicular columns—all of 
length one. Multiplying any vector by U or V leaves a vector of the same length—so 
computations don’t blow up or down. And ¥ is a positive diagonal matrix of “singular 
values”. If you learn about eigenvalues and eigenvectors in Chapter 6, please continue 

a few pages to singular values in Section 7.1. 

Deep Learning 

For a true picture of linear algebra, applications have to be included. Completeness 1s 

totally impossible. At this moment, the dominating direction of applied mathematics 

has one special requirement: It cannot be entirely linear ! 

One name for that direction is “deep learning”. It is an extremely successful approach to 

a fundamental scientific problem: Learning from data. In many cases the data comes in a 

matrix. Our goal is to look inside the matrix for the connections between variables. Instead 

of solving matrix equations or differential equations that express known input-output rules, 
we have to find those rules. The success of deep learning is to build a function F'(x. v) 

with inputs & and v of two kinds: 

The vectors v describes the features of the training data. 

The matrices x assign weights to those features. 

The function F(x, v) is close to the correct output for that training data v. 

When v changes to unseen test data, F'(x, v) stays close to correct. 

This success comes partly from the form of the learning function F', which allows it to 

include vast amounts of data. In the end, a linear function F' would be totally inadequate. 

The favorite choice for F' is piecewise linear. This combines simplicity with generality.
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Applications in the Book and on the Website 

I hope this book will be useful to you long after the linear algebra course is complete. 

It is all the applications of linear algebra that make this possible. Matrices carry data, 
and other matrices operate on that data. The goal is to “see into a matrix” by understand- 

ing its eigenvalues and eigenvectors and singular values and singular vectors. And each 
application has special matrices—here are four examples : 

Markov matrices M Each column is a set of probabilities adding to 1. 

Incidence matrices A Graphs and networks start with a set of nodes. The matrix 
A tells the connections (edges) between those nodes. 

Transform matrices ' The Fourier matrix uncovers the frequencies in the data. 

Covariance matrices C  The variance is key information about a random variable. 
The covariance explains dependence between variables. 

We included those applications and more in this Sixth Edition. For the crucial computation 

of matrix weights in deep learning, Chapter 9 presents the ideas of optimization. This is 
where linear algebra meets calculus : derivative = zero becomes a matrix equation at the 

minimum point because F'(x) has many variables. 

Several topics from the Fifth Edition gave up their places but not their importance. 

Those sections simply moved onto the Web. The website for this new Sixth Edition 1s 

math.mit.edu/linearalgebra 

That website includes sample sections from this new edition and solutions to all Problem 

Sets. These sections (and more) are saved online from the Fifth Edition : 

Fourier Series Norms and Condition Numbers 

Iterative Methods and Preconditioners Linear Algebra for Cryptography 

Here is a small touch of linear algebra—three questions before this course gets serious : 

1. Suppose you draw three straight line segments of lengths r and 8 and ¢ on this page. 

What are the conditions on those three lengths to allow you to make the segments 

into a triangle ? In this question you can choose the directions of the three lines. 

2. Now suppose the directions of three straight lines u, v, w are fixed and different. 

But you could stretch those lines to au,bv,cw with any numbers a,b,c. 

Can you always make a closed triangle out of the three vectors au, bv,cw ? 

3. Linear algebra doesn’t stay in a plane! Suppose you have four lines u, v, w, 2 

in different directions in 3-dimensional space. Can you always choose the numbers 

a, b, c,d (zeros not allowed) sothatau + bv + cw +dz =07? 

For typesetting this book, maintaining its website, offering quality textbooks to Indian fans, 

I am grateful to Ashley C. Fernandes of Wellesley Publishers (www.wellesleypublishers.com) 

gilstrang @gmail.com Gilbert Strang



1 Vectors and Matrices 

1.1 Vectors and Linear Combinations 

1.2 Lengths and Angles from Dot Products 

1.3 Matrices and Their Column Spaces 

14 Matrix Multiplication AB and CR 

Linear algebra is about vectors v and matrices A. Those are the basic objects that we can 

add and subtract and multiply (when their shapes match correctly). The first vector v has 

two components v; = 2 and v = 4. The vector w is also 2-dimensional. 

o=[n]=[3] we=[n]-[3] ere-[3] 
The linear combinations of v and w are the vectors cv + dw for all numbers c and d: 

The linear 2 1] [ 2c+1d 

combinations c[ 4 ]+ d[ 3 ] = [ dc + 3d ] fill the xy plane 

The length of that vector w is ||w|| = V10, the square root of w? + w2 = 1 + 9. 
The dot product of v and wis v - w = vyw; + vowe = (2)(1) + (4)(3) = 14. 
In Section 1.2, v - w will reveal the angle between those vectors. 

The big step in Section 1.3 is to introduce a matrix. This matrix A contains our two 
column vectors. The vectors have two components, so the matrix is 2 by 2: 

2 1 e[ #]- (23] 
When a matrix multiplies a vector, we get a combination cv + dw of its columns: 

: cl|_ |21 c|_| 2c+1d | _ 
Atlmes[d]—[4 3][d]—[4c+3d]_w+dw' 

And when we look at all combinations Ax (with every c and d), those vectors produce the 
column space of the matrix A. Here that column space is a plane. 

With three vectors, the new matrix B has columns v, w, 2. In this example 2 is 
a combination of v and w. So the column space of B is still the zy plane. The vectors v 
and w are independent but v, w, 2 are dependent. A combination produces zero: 

oo olfi 3 fomo ] 3]s veeeBl BT 
The final goal is to understand matrix multiplication AB = A times each column of B. 

1



Chapter 1. Vectors and Matrices 
2 

1.1 Vectors and Linear Combinations 

fi _ 3w is a linear combination cv + dw of the vectors v and w. \ 

2J [2] 2 L 4 
2 Forv = [‘11] and w = [_1] that combination is 2 [l] -3 [_1 

3 All combinations ¢ [‘11] +d [ _?] fill the zy plane. They produce every 

-y 

- - 1 
“ q Fg fill a plane 9 

4 The vectors c | 1| + in Yz space. 

\ 2] 4 |3 

Calculus begins with numbers z and functions f(z). Linear algebra begins with vectors 

v, w and their linear combinations cv + dw. Immediately this takes you into two or more 

(possibly many more) dimensions. But linear combinations of vectors v and w are built 

from just two basic operations: 

is not on that plane. 

2 
Multiply a vector v by a number  3v =3 [ 1 J = [ 3 ] 

4 6 
Add vectors v and w of the same dimension: v + w = [ ? ] + [ 3 } = [ 4 ] 

Those operations come together in a linear combination cv + dwofvand w: 

Linear combination Eo — 2w =5 2| |4 ]|_|10|_| 8 |_ 2 

c=5add=-2 " %11 37| 5 6 |~ | -1 

That idea of a linear combination opens up two key questions : 

1 Describe all the combinations cv + dw. Do they fill a plane or a line ? 

2 Find the numbers c and d that produce a specific combination cv + dw = [ (2) ] 

We can answer those questions here in Section 1.1. But linear algebra is not limited to 

2 vectors in 2-dimensional space. As long as we stay linear, the problems can get bigger 

(more dimensions) and harder (more vectors). The vectors will have m components instead 

of 2 components. We will have n vectors vy,v2,...,v, instead of 2 vectors. Those 

n vectors in m-dimensional space will go into the columns of an m by n matrix A: 

m rows " ) 
n columns A=| v, v -+ v, 
m by n matrix _ J 

Let me repeat the two key questions using A, and then retreat back tom = 2and n = 2: 

1 Describe all the combinations Az = z,v; + z2v2 + - - - + Z,V,, Of the columns 

2 Find the numbers x; to x,, that produce a desired output vector ATz = b 
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Linear Combinations cv 4+ dw 

Start from the beginning. A vector v in 2-dimensional space has two components. To draw 

v and —wv, use an arrow that begins at the zero vector: 

_ 2 

S b 
i s~~~ 4 

+ +— o+t eVt W= [O] =w+v 

—21 _.°° | 
—_y = a L 

7 [_1 ] w = [ 2] 
—1 

The vectors cv (for all numbers c) fill an infinitely long line in the zy plane. If w i1s not on 

that line, then the vectors dw fill a second line. We aim to see that the linear combinations 

cv + dw fill the plane. Combining points on the v line and the w line gives all points. 

Here are four different linear combinations—we can choose any numbers c and d : 

lv+ 1w = sum of vectors 

lv — 1w = difference of vectors 

Ov+ 0w = zerovector 

cv + 0w = vector cv in the direction of v 

Solving Two Equations 

Very often linear algebra offers the choice of a picture or a computation. The picture can 

start with v + w and w + v (those are equal). Another important vector 1s w — v. going 

backwards on v. The Preface has a picture with many more combinations—starting to 

fill a plane. But if we aim for a particular vector like cv + dw = [g] , it will be better 

to compute the exact numbers c and d. Here are two ways to write down this problem. 

2 2] |8 . 2c+2d =8 
Solve c[1]+d[_l]—[2]. This means e d=2 

The rules for solution are simple but strict. We can multiply equations by numbers (nor 
zero!) and we can subtract one equation from another equation. Expernience teaches that 
the key is to produce zeros on the left side of the equations. One zero will be enough'! 

%(equation l)isc+d=4 
. 2c+2d= 8 

Subtract this from equation 2 
Oc—-—2d =-2 

Then c is eliminated = 
The second equation gives d = 1. Going upwards, the first equation becomes 2c + 2 = 8. 

Its solution is ¢ = 3. This combination is correct : 

[1]ea[ 3]-[2) e [3 2](2]-2
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Column Way, Row Way, Matrix Way 

Column way 7 +d wy | | b 

Linear combination € Vg wy | | by 

Row way vic+w d = b, 

Two equations for ¢ and d v2Cc + wad = b, 

Matrix way V1 W c|_| b 
2 by 2 matrix v w3 d| | b 

If the points v and w and the zero vector O are not on the same line, there is exactly one 

solution ¢, d. Then the linear combinations of v and w exactly fill the zy plane. The vectors 

v and w are “linearly independent”. The 2by 2 matrix A = [ v w | is “invertible”. 

Can Elimination Fail ? 

Elimination fails to produce a solution only when the equations don’t have a solution 

in the first place. This can happen when the vectors v and w lie on the same line 

through the center point (0,0). Those vectors are not independent. 
The reason is clear: All combinations of v and w will then lie on that same line. 

If the desired vector b is off the line, then the equations cv + dw = b have no solution: 

11 |3 ! lc+3d=1 
Example v—[zl w—[fi] b—[o] 2 +6d = 0 

Those two equations can’t be solved. To eliminate the 2 in the second equation, we mul- 
tiply equation 1 by 2. Then elimination subtracts 2¢ + 6d = 2 from the second equation 

2c + 6d = 0. The result is 0 = —2: impossible. We not only eliminated ¢, we also 
eliminated d. 

With v and w on the same line, combinations of v and w fill that line but not a plane. 

When b is not on that line, no combination of v and w equals b. The original vectors v and 

w are “linearly dependent” because w = 3v. 

Linear combinations of two independent vectors v and w in two-dimensional space 

can produce any vector b in that plane. Then these equations have a solution : 

2 equations _ cvy; +dw; = by 

2 unknowns cv+dw=>b cvy + dwe = b, 

Summary The combinations cv + dw fill the z-y plane unless v is in line with w. 

Important Here is a different example where elimination seems to be in trouble. But 
we can easily fix the problem and go on. 

0 +d 2| | 2 or 0+2d=2 
‘11 3| |7 c+3d=7 

That zero looks dangerous. But we only have to exchange equations to find d and c: 

c+3d="17 
0+2d=2 leadsto d=1 and c=4
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Vectors in Three Dimensions 

Suppose v and w have three components instead of two. Now they are vectors in three- 

dimensional space (which we will soon call R>). We still think of points in the space and 

arrows out from the zero vector. And we still have linear combinations of v and w: 

(2] 1] 3] [ 2c+d | 
v=| 3 w=1|1 v+w=| 4 cv+dw=| 3c+d 

_1_ _0_ _1_ Lc+0_ 

But there is a difference ! The combinations of v and w do not fill the whole 3-dimensional 

space. If we only have 2 vectors, their combinations can at most fill a 2-dimensional plane. 

It is not a case of linear dependence, it is just a case of not enough vectors. 

We need three independent vectors if we want their combinations to fill 3-dimensional 
space. Here is the simplest choice 2, 7, k for those three independent vectors : 

(1] 0 ] 0 ] [ c | 
i=|0 j=11 k=0 ci+dj+ek=|d (1) 

LO-J 30- Ll.a .e.. 

Now %, j, k go along the .y, z axes in three-dimensional space R>. We can easily write 
any vector v in R® as a combination of 1. j, k 

Vector form u1 1 00 Uy U 
. v=| vy |=v1t+ 1) + v3k 0 1 O ' = ) 

Matrix form | v3 | _ 0 0 1 1w e 

That is the 3 by 3 identity matrix I. Multiplying by I leaves every vector unchanged. 

I is the matrix analog of the number 1, because /v = v for every v. 
Notice that we could not take a linear combination of a 2-dimensional vector v and 

a 3-dimensional vector w. They are not in the same space. 

How Do We Know It is a Plane ? 

Suppose v and w are nonzero vectors with three components each. Assume they are 

independent, so the vectors point in different directions: w is not a multiple cv. Then 

their linear combinations fill a plane inside 3-dimensional space. The surface is fiat. 

Here is one way to see that this is true : 

Look at any two combinations cv + dw and Cv + Dw. Halfway between those 
points is h = 2(c + C)v + 3(d + D)w. This is another combination of v and w. 
So our surface has the basic property of a plane: Halfway between any two points 

on the surface is another point h on the surface. The surface must be flat ! 

Maybe that reasoning is not complete, even with the exclamation point. We depended 
on intuition for the properties of a plane. Another proof is coming in Section 1.2.
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Problem Set 1.1 

a 

b 

two equations ¢ = ma and d = mb. By eliminating m, find one equation connecting 

a. b. c,d. You can assume no zeros in these numbers. 

Under what conditions on a, b, ¢, d is [ ; ] a multiple m of [ ] ? Start with the 

Going around a triangle from (0, 0) to (5.0) to (0, 12) to (0, 0), what are those three 

vectors u, v, w? What is u + v + w? What are their lengths ||u|| and ||v|| and 

||w]| ? The length squared of a vector u = (u;, u) is ||u||* = u? + u2. 

Problems 3-10 are about addition of vectors and linear combinations. 

3 

10 

Descnbe geometrically (line, plane, or all of R3) all linear combinations of 

3 1 0 2 0 2 
(a) |2| and |6 (b) O] and | 2 (c) Oland | 2] and | 2 

3 9 0] 3] 0] (2 3] 

Draw v = [ ‘11 J and w= [ _g} and v+w and v—w in a single zy plane. 

fo+w= [ ? ] andv —w = [ ; ‘ compute and draw the vectors v and w. 

Fromvz[%]andwz[l 9 ] find the components of 3v + w and cv + dw. 

Compute u + v + w and 2u + 2v + w. How do you know u, v, w lie in a plane? 

- - s Y 

These lie in a plane because _ ; _ _:1; — _;2; 
w = cu + dv. Find c and d w= v _9 v ~1 | 

g L - - - 

Every combination of v = (1,-2,1) and w = (0, 1, —1) has components that add 
to . Find ¢ and d so that cv + dw = (3,3, —6). Why is (3, 3, 6) impossible? 

In the ry plane mark all nine of these linear combinations: 

c[?]+d[(l)] with ¢=0,1,2 and d=0,1,2. 

(Not easy) How could you decide if the vectors u = (1,1,0) and v = (0,1, 1) and 
w = (a, b, c) are linearly independent or dependent ?
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,’, Notice the illusion 

/ 1s (0,0,0) at the 

....... & top or bottom ? 

Figure 1.1: Unit cube from i, j, k and twelve clock vectors: all lengths = 1. 

11 If three corners of a parallelogram are (1.1), (4.2), and (1. 3), what are all three of 
the possible fourth corners? Draw those three parallelograms. 

Problems 12-15 are about special vectors on cubes and clocks in Figure 1.1. 

12  Four corners of this unit cube are (0.0.0), (1.0.0), (0.1.0), (0.0.1). What are the 
other four corners? Find the coordinates of the center point of the cube. The center 

points of the six faces have coordinates . The cube has how many edges ? 

13  Review Question. In ryz space. where is the plane of all linear combinations of 

1 =(1,0,0)and 2+ 7 = (1.1,0)? 

14 (a) What is the sum V of the twelve vectors that go from the center of a clock to 

the hours 1:00, 2:00, ..., 12:00? 

(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00? 

(c) The components of that 2:00 vector are v = (cos 6.sin8) ? What is 6 ? 

15  Suppose the twelve vectors start from 6:00 at the bottom instead of (0.0) at the 

center. The vector to 12:00 is doubled to (0, 2). The new twelve vectors add to : 

16  Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line. 

Find vectors u, v, w in 3D so that their combinations cu + dv + ew fill only a plane. 

17  What combination c [ ;] +d [::] produces [lg] ? Express this question as two 

equations for the coefficients ¢ and d in the linear combination. 

Problems 18-19 go further with linear combinations of v and w (see Figure 1.2a). 

18  Figure 1.2a shows 3 v + 5 w. Mark the points 3 v+ fwand v+ 1 wand v + w. 
Draw the line of all combinations cv + dw that have ¢ + d = 1. 

19  Restricted by 0 < ¢ < 1and 0 < d < 1, shade in all the combinations cv + dw. 
Restricted only by ¢ > 0 and d > 0 draw the *“cone” of all combinations cv + dw.



Figure 1.2: Problems 18-19 in a plane 

Chapter 1. Vectors and Matrices 

(a) (b) 

Problems 20-23 in 3-dimensional space 

Problems 20-23 deal with u, v, w in three-dimensional space (see Figure 1.2b). 

20 

21 

22 

23 

24 

25 

26 

27 

Locate % u+ % v+ % w and % u+ % w in Figure 1.2b. Challenge problem: Under 
what restrictions on c, d, e, will the combinations cu + dv + ew fill in the dashed 

triangle? To stay in the triangle, one requirementis ¢ > 0,d > 0,e > 0. 

The three dashed lines in the triangle are v — u and w — v and u — w. Their sum is 

_____. Draw the head-to-tail addition around a plane triangle of (3, 1) plus (—1,1) 
plus (-2, —-2). 

Shade in the pyramid of combinations cu + dv + ew withc > 0,d > 0, e > 0 and 

¢ +d + e < 1. Mark the vector 3 (u + v + w) as inside or outside this pyramid. 

If you look at all combinations of those u, v, and w, is there any vector that can’t be 

produced from cu + dv + ew? Different answer if u, v, w are all in 

Challenge Problems 

How many comers (+1,£1,£1, £1) does a cube of side 2 have in 4 dimensions ? 

What is its volume? How many 3D faces? How many edges? Find one edge. 

Find two different combinations of the three vectors u = (1,3) and v = (2,7) and 
w = (1,5) that produce b = (0,1). Slightly delicate question: If I take any three 
vectors u, v, w in the plane, will there always be two different combinations that 

produce b = (0,1)? 

The linear combinations of v = (a,b) and w = (c, d) fill the plane unless 
Find four vectors u, v, w, 2 with four nonzero components each so that their 
combinations cu + dv + ew + fz produce all vectors in four-dimensional space. 

Write down three equations for ¢, d, e so that cu + dv + ew = b. Write this also as 

a matrix equation Az = b. Can you somehow find ¢, d, e for this b ? 
ol 

2  —1 ] 0 1 
u=1] -1 v= 2 w=| -1 0 

| 0 -1 2 0 
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1.2 Lengths and Angles from Dot Products 

(‘I‘he “dot product” of v = [ . ] and w = [ : ] isv-w= (1)) +(2)(6) =4+12= 1A 

2 The length squared of v = (1,3,2)isv-v =1+ 9+ 4 = 14. The length is ||v|| = V14. 

3 v =(1,3,2) is perpendicular to w = (4, —4, 4) because v - w = 0. 

' 1 1 vVew 1 
4 The angle @ = 45° between v = [ ]andw= [ ]hascose= = . 

L 1 ol Tl ~ (1(v2) 
Schwarz inequality Triangle inequality 

QAII angles have | cos 6| < 1. All vectors have |y . w|<||v]| llw|||||v+w||< ||v||+||w||/ 

The most useful multiplication of vectors v and w is their dot product v - w. We 
multiply the first components v; w; and the second components vow, and so on. Then we 
add those results to get a single numberv - w: 

The dot product of v = [ z; ] and w = [ z; ] isv.w=vw +vow.| (1) 

If the vectors are in n-dimensional space with n components each, then 

Dot product vew=nw +vwr+- -+ VW =WV (2) 

The dot product v - v tells us the squared length ||v||? = v? +---+v2 of a vector. 
In two dimensions, this is the Pythagoras formula a? + b* = c? for a right triangle. 
The sides have a2 = v? and b?> = v2. The hypotenuse has ||v||? = v? + v = a? + b2, 

To reach n dimensions, we can add one dimension at a time. Figure 1.2 shows 
v = (1,2) in two dimensions and w = (1,2, 3) in three dimensions. Now the right 
triangle has sides (1,2,0) and (0,0, 3). Those vectors add to w. The first side is in the 
zy plane, the second side goes up the perpendicular 2 axis . For this triangle in 3D with 

hypotenuse w = (1,2, 3), the law a2 + b = ¢? becomes (12 + 22) + (3%) = 14 = ||w||. 

,,11' """ 0 
: , K 

©,2) | (1,2) has length v/5 =1 (‘,'2'13) ht;s\/fi 
/3 vev =10+ 0] v/ | 

g +——8=12+2 ! w | 
3 3 

1 w-w=vw}+ wi+ vl : o ' 
"L0) 14=12 422 4 32— !, ~(0.2,0) 

’ | - o/ VBN [(1,2,0) has 
g AL EE DR length v/5 

Figure 1.3: The length /v - v = v/5 in a plane and /w - w = v/14 in three dimensions.


