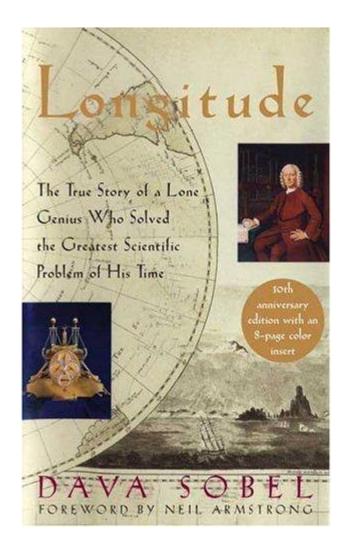

L'ongitude


The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time

10th anniversary edition with an 8-page color insert

LONGITUDE

by Dava Sobel

Copyright © Dava Sobel, 1995

Penguin Books USA Inc., 375 Hudson Street,

New York, New York 10014, U.S.A.

ISBN 0-8027-1312 (hc)

ISBN 0 14 02.5879 5 (pbk.)

For my mother, Betty Gruber Sobel, a four-star navigator who can sail by the heavens but always drives by way of Canarsie. Acknowledgments

Thank you, William J. H. Andrewes, the David P. Wheatland Curator of the Collection of Historical Scientific Instruments at Harvard University, for first introducing me to the lore of longitude, and for hosting the Longitude Symposium in Cambridge, November 4-6, 1993.

Thanks, too, to the editors of *Harvard Magazine*—especially John Bethell, Christopher Reed, Jean Martin, and Janet Hawkins—for sending me to the Longitude Symposium and publishing my article about it as the cover story in the March/April 1994 issue.

Thanks also to the judges of the Council for the Advancement and Support of Education, Publications Division, for awarding my longitude article their 1994 Gold Medal for the best feature in an alumni magazine.

Special thanks to George Gibson, Publisher of Walker and Company, for reading that article, seeing it as the beginning of a book—and calling me out of the blue to say so.

And to Michael Carlisle, Vice President of the William Morris Agency, thank you so much for representing this project with more than your usual flair.

1. Imaginary Lines

When I'm playful I use the meridians of longitude and parallels of latitude for a seine, and drag the

Atlantic Ocean for whales.

-mark twain, Life on the Mississippi

Once on a Wednesday excursion when I was a little girl, my father bought me a beaded wire ball that I loved. At a touch, I could collapse the toy into a flat coil between my palms, or pop it open to make a hollow sphere. Rounded out, it resembled a tiny Earth, because its hinged wires traced the same pattern of intersecting circles that I had seen on the globe in my schoolroom—the thin black lines of latitude and longitude. The few colored beads slid along the wire paths haphazardly, like ships on the high seas.

My father strode up Fifth Avenue to Rockefeller Center with me on his shoulders, and we stopped to stare at the statue of Atlas, carrying Heaven and Earth on his.

The bronze orb that Atlas held aloft, like the wire toy in my hands, was a see-through world, defined by imaginary lines. The Equator. The Ecliptic. The Tropic of Cancer. The Tropic of Capricorn. The Arctic Circle. The prime meridian. Even then I could recognize, in the graph-paper grid imposed on the globe, a powerful symbol of all the real lands and waters on the planet.

Today, the latitude and longitude lines govern with more authority than I could have imagined forty-odd years ago, for they stay fixed as the world changes its configuration underneath them—with continents adrift across a widening sea, and national boundaries repeatedly redrawn by war or peace.

As a child, I learned the trick for remembering the difference between latitude and longitude. The latitude lines, the *parallels*, really do stay parallel to each other as they girdle the globe from the Equator to the poles in a

series of shrinking concentric rings. The meridians of longitude go the other way: They loop from the North Pole to the South and back again in great circles of the same size, so they all converge at the ends of the Earth.

Lines of latitude and longitude began crisscrossing our worldview in ancient times, at least three centuries before the birth of Christ. By a.d. 150, the cartographer and astronomer Ptolemy had plotted them on the twenty-seven maps of his first world atlas. Also for this landmark volume, Ptolemy listed all the place names in an index, in alphabetical order, with the latitude and longitude of each—as well as he could gauge them from travelers' reports. Ptolemy himself had only an armchair appreciation of the wider world. A common misconception of his day held that anyone living below the Equator would melt into deformity from the horrible heat.

The Equator marked the zero-degree parallel of latitude for Ptolemy. He did not choose it arbitrarily but took it on higher authority from his predecessors, who had derived it from nature while observing the motions of the heavenly bodies. The sun, moon, and planets pass almost directly overhead at the Equator. Likewise the Tropic of Cancer and the Tropic of Capricorn, two other famous parallels, assume their positions at the sun's command. They mark the northern and southern boundaries of the sun's apparent motion over the course of the year.

Ptolemy was free, however, to lay his prime meridian, the zero-degree longitude line, wherever he liked. He chose to run it through the Fortunate Islands (now called the Canary & Madeira Islands) off the northwest coast of Africa. Later mapmakers moved the prime meridian to the Azores and to the Cape Verde Islands, as well as to Rome, Copenhagen, Jerusalem, St. Petersburg, Pisa, Paris, and Philadelphia, among other places, before it settled down at last in London. As the world turns, any line drawn from pole to pole may serve as well as any other for a starting line of reference. The placement of the prime meridian is a purely political decision.

Here lies the real, hard-core difference between latitude and longitude beyond the superficial difference in line direction that any child can see: The zero-degree parallel of latitude is fixed by the laws of nature, while the zerodegree meridian of longitude shifts like the sands of time. This difference makes finding latitude child's play, and turns the determination of longitude, especially at sea, into an adult dilemma—one that stumped the wisest minds of the world for the better part of human history. Any sailor worth his salt can gauge his latitude well enough by the length of the day, or by the height of the sun or known guide stars above the horizon. Christopher Columbus followed a straight path across the Atlantic when he "sailed the parallel" on his 1492 journey, and the technique would doubtless have carried him to the Indies had not the Americas intervened.

The measurement of longitude meridians, in comparison, is tempered by time. To learn one's longitude at sea, one needs to know what time it is aboard ship

and also the time at the home port or another place of known longitude—at that very same moment. The two clock times enable the navigator to convert the hour difference into a geographical separation. Since the Earth takes twenty-four hours to complete one full revolution of three hundred sixty degrees, one hour marks one twenty-fourth of a spin, or fifteen degrees. And so each hour's time difference between the ship and the starting point marks a progress of fifteen degrees of longitude to the east or west. Every day at sea, when the navigator resets his ship's clock to local noon when the sun reaches its highest point in the sky, and then consults the home-port clock, every hour's discrepancy between them translates into another fifteen degrees of longitude.

Those same fifteen degrees of longitude also correspond to a distance traveled. At the Equator, where the girth of the Earth is greatest, fifteen degrees stretch fully one thousand miles. North or south of that line, however, the mileage value of each degree decreases. One degree of longitude equals four minutes of time the world over, but in terms of distance, one degree shrinks from sixty-eight miles at the Equator to virtually nothing at the poles.

Precise knowledge of the hour in two different places at once—a longitude prerequisite so easily accessible today from any pair of cheap wristwatches— was utterly unattainable up to and including the era

of pendulum clocks. On the deck of a rolling ship, such clocks would slow down, or speed up, or stop running altogether. Normal changes in temperature encountered en route from a cold country of origin to a tropical trade zone thinned or thickened a clock's lubricating oil and made its metal parts expand or contract with equally disastrous results. A rise or fall in barometric pressure, or the subtle variations in the Earth's gravity from one latitude to another, could also cause a clock to gain or lose time.

For lack of a practical method of determining longitude, every great captain in the Age of Exploration became lost at sea despite the best available charts and compasses. From Vasco da Gama to Vasco Nunez de Balboa, from Ferdinand Magellan to Sir Francis Drake—they all got where they were going willy-nilly, by forces attributed to good luck or the grace of God.

As more and more sailing vessels set out to conquer or explore new territories, to wage war, or to ferry gold and commodities between foreign lands, the wealth of nations floated upon the oceans. And still no ship owned a reliable means for establishing her whereabouts. In consequence, untold numbers of sailors died when their destinations suddenly loomed out of the sea and took them by surprise. In a single such accident, on October 22, 1707, at the Scilly Isles near the southwestern tip of England, four homebound British warships ran aground and nearly two thousand men lost their lives.

The active quest for a solution to the problem of longitude persisted over four centuries and across the whole continent of Europe. Most crowned heads of state eventually played a part in the longitude story, notably King George III of England and King Louis XIV of France. Seafaring men such as Captain William Bligh of the *Bounty* and the great circumnavigator Captain James Cook, who made three long voyages of exploration and experimentation before his violent death in Hawaii, took the more promising methods to sea to test their accuracy and practicability.

Renowned astronomers approached the longitude challenge by appealing to the clockwork universe: Galileo Galilei, Jean Dominique Cassini, Christiaan Huygens, Sir Isaac Newton, and Edmond Halley, of comet fame, all entreated the moon and stars for help. Palatial observatories were founded at Paris, London, and Berlin for the express purpose of determining longitude by the heavens. Meanwhile, lesser minds devised schemes that depended on the yelps of wounded dogs, or the cannon blasts of signal ships strategically anchored—somehow—on the open ocean.

In the course of their struggle to find longitude, scientists struck upon other discoveries that changed their view of the universe. These include the first

accurate determinations of the weight of the Earth, the distance to the stars, and the speed of light.

As time passed and no method proved successful, the search for a solution to the longitude problem assumed legendary proportions, on a par with discovering the Fountain of Youth, the secret of perpetual motion, or the formula for transforming lead into gold. The governments of the great maritime nations—including Spain, the Netherlands, and certain city-states of Italy—periodically roiled the fervor by offering jackpot purses for a workable method. The British Parliament, in its famed Longitude Act of 1714, set the highest bounty of all, naming a prize equal to a king's ransom (several million dollars in today's currency) for a "Practicable and Useful" means of determining longitude.

English clockmaker John Harrison, a mechanical genius who pioneered the science of portable precision timekeeping, devoted his life to this quest. He accomplished what Newton had feared was impossible: He invented a clock that would carry the true time from the home port, like an eternal flame, to any remote corner of the world.

Harrison, a man of simple birth and high intelligence, crossed swords with the leading lights of his day. He made a special enemy of the Reverend Nevil Maskelyne, the fifth astronomer royal, who contested his claim to the coveted prize money, and whose tactics at certain junctures can only be described as foul play.

With no formal education or apprenticeship to any watchmaker, Harrison nevertheless constructed a series of virtually friction-free clocks that, required no lubrication and no cleaning, that were made from materials impervious to rust, and that kept their moving parts perfectly balanced in relation to one another, regardless of how the world pitched or tossed about them. He did away with the pendulum, and he combined different metals inside his works in such a way that when one component expanded or contracted with changes in temperature, the other counteracted the change and kept the clock's rate constant.

His every success, however, was parried by members of the scientific elite, who distrusted Harrison's magic box. The commissioners charged with awarding the longitude prize—Nevil Maskelyne among them— changed the contest rules whenever they saw fit, so as to favor the chances of astronomers over the likes of Harrison and his fellow "mechanics." But the utility and accuracy of Harrison's approach triumphed in the end. His followers shepherded Harrison's intricate, exquisite invention through the design modifications that enabled it to be mass produced and enjoy wide use.

An aged, exhausted Harrison, taken under the wing of King George III, ultimately claimed his rightful monetary reward in 1773—after forty struggling years of political intrigue, international warfare, academic backbiting, scientific revolution, and economic upheaval.

All these threads, and more, entwine in the lines of longitude. To unravel them now—to retrace their story in an age when a network of orbiting satellites can nail down a ship's position within a few feet in just a moment or two—is to see the globe anew.

2. The Sea Before Time

They that go down to the Sea in Ships, that do bus-ness

in great waters, these see the works of the Lord,

and His wonders in the deep.

—PSALM 107

Dirty weather," Admiral Sir Clowdisley Shovell called the fog that had dogged him twelve days at sea. Returning home victorious from Gibraltar

after skirmishes with the French Mediterranean forces, Sir Clowdisley could not beat the heavy autumn overcast. Fearing the ships might founder on coastal rocks, the admiral summoned all his navigators to put their heads together.

The consensus opinion placed the English fleet safely west of Ile d'Ouessant, an island outpost of the Brittany peninsula. But as the sailors continued north, they discovered to their horror that they had mis-gauged their longitude near the Scilly Isles. These tiny islands, about twenty miles from the southwest tip of England, point to Land's End like a path of steppingstones. And on that foggy night of October 22, 1707, the Scillies became unmarked tombstones for two thousand of Sir Clowdisley's troops.

The flagship, *the Association*, struck first. She sank within minutes, drowning all hands. Before the rest of the vessels could react to the obvious danger, two more ships, the *Eagle* and the *Romney*, pricked themselves on the rocks and went down like stones. In all, four of the five warships were lost.

Only two men washed ashore alive. One of them was Sir Clowdisley himself, who may have watched the fifty-seven years of his life flash before his eyes as the waves carried him home. Certainly he had time to reflect on the events of the previous twenty-four hours, when he made what must have been the worst mistake in judgment of his naval career. He had been approached by a sailor, a member of *the Association's* crew, who claimed to have kept his own reckoning of the fleet's location during the whole cloudy passage. Such subversive navigation by an inferior was forbidden in the Royal Navy, as the unnamed seaman well knew. However, the danger appeared so enormous, by his calculations, that he risked his neck to make his concerns known to the officers. Admiral Shovell had the man hanged for mutiny on the spot.

No one was around to spit "I told you so!" into Sir Clowdisley's face as he nearly drowned. But as soon as the admiral collapsed on dry sand, a local woman combing the beach purportedly found his body and fell in love with the emerald ring on his finger. Between her desire and his depletion, she handily murdered him for it. Three decades later, on her deathbed, this same woman confessed the crime to her clergyman, producing the ring as proof of her guilt and contrition. The demise of Sir Clowdisley's fleet capped a long saga of seafaring in the days before sailors could find their longitude. Page after page from this miserable history relates quintessential horror stories of death by scurvy and thirst, of ghosts in the rigging, and of landfalls in the form of shipwrecks, with hulls dashed on rocks and heaps of drowned corpses fouling the beaches. In literally hundreds of instances, a vessel's ignorance of her longitude led swiftly to her destruction.

Launched on a mix of bravery and greed, the sea captains of the fifteenth, sixteenth, and seventeenth centuries relied on "dead reckoning" to gauge their distance east or west of home port. The captain would throw a log overboard and observe how quickly the ship receded from this temporary guidepost. He noted the crude speedometer reading in his ship's logbook, along with the direction of travel, which he took from the stars or a compass, and the length of time on a particular course, counted with a sandglass or a pocket watch. Factoring in the effects of ocean currents, fickle winds, and errors in judgment, he then determined his longitude. He routinely missed his mark, of course—searching in vain for the island where he had hoped to find fresh water, or even the continent that was his destination. Too often, the technique of dead reckoning marked him for a dead man.

Long voyages waxed longer for lack of longitude, and the extra time at sea condemned sailors to the dread disease of scurvy. The oceangoing diet of the day, devoid of fresh fruits and vegetables, deprived them of vitamin C, and their bodies' connective tissue deteriorated as a result. Their blood vessels leaked, making the men look bruised all over, even in the absence of any injury. When they were injured, their wounds failed to heal. Their legs swelled. They suffered the pain of spontaneous hemorrhaging into their muscles and joints. Their gums bled, too, as their teeth loosened. They gasped for breath, struggled against debilitating weakness, and when the blood vessels around their brains ruptured, they died.

Beyond this potential for human suffering, the global ignorance of longitude wreaked economic havoc on the grandest scale. It confined transoceanic vessels to a few narrow shipping lanes that promised safe passage. Forced to navigate by latitude alone, whaling ships, merchant ships, warships, and pirate ships all clustered along well-trafficked routes, where they fell prey to one another. In 1592, for example, a squadron of six English men-of-war coasted off the Azores, lying in ambush for Spanish traders heading back from the Caribbean. The *Madre de Dens*, an enormous Portuguese galleon

returning from India, sailed into their web. Despite her thirty-two brass guns, the *Madre de Deus* lost the brief battle, and Portugal lost a princely cargo. Under the ship's hatches lay chests of gold and silver coins, pearls, diamonds, amber, musk, tapestries, calico, and ebony. The spices had to be counted by the ton—more than four hundred tons of pepper, forty-five of cloves, thirty-five of cinnamon, and three each of mace and nutmeg. The *Madre de Deus* proved herself a prize worth half a million pounds sterling— or approximately half the net value of the entire English Exchequer at that date. By the end of the seventeenth century, nearly three hundred ships a year sailed between the British Isles and the West Indies to ply the Jamaica trade. Since the sacrifice of a single one of these cargo vessels caused terrible losses, merchants yearned to avoid the inevitable. They wished to discover secret routes—and that meant discovering a means to determine longitude.

The pathetic state of navigation alarmed the renowned English diarist Samuel Pepys, who served for a time as an official of the Royal Navy. Commenting on his 1683 voyage to Tangiers, Pepys wrote: "It is most plain, from the confusion all these people are in, how to make good their reckonings, even each man's with itself, and the nonsensical arguments they would make use of to do it, and disorder they are in about it, that it is by God's Almighty Providence and great chance, and the wideness of the sea, that there are not a great many more misfortunes and ill chances in navigation than there are."

That passage appeared prescient when the disastrous wreck on the Scillies scuttled four warships. The 1707 incident, so close to the shipping centers of England, catapulted the longitude question into the forefront of national affairs. The sudden loss of so many lives, so many ships, and so much honor all at once, on top of centuries of previous privation, underscored the folly of ocean navigation without a means for finding longitude. The souls of Sir Clowdisley's lost sailors—another two thousand martyrs to the cause—precipitated the famed Longitude Act of 1714, in which Parliament promised a prize of £20,000 for a solution to the longitude problem.

In 1736, an unknown clockmaker named John Harrison carried a promising possibility on a trial voyage to Lisbon aboard H.M.S. *Centurion*. The ship's officers saw firsthand how Harrison's clock could improve their reckoning. Indeed, they thanked Harrison when his newfangled contraption showed them to be about sixty miles off course on the way home to London.

By September 1740, however, when the *Centurion* set sail for the South Pacific under the command of Commodore George Anson, the longitude clock stood on terra firma in Harrison's house at Red Lion Square. There the inventor, having already completed an improved second version of it, was hard at work on a third with further refinements. But such devices were not yet generally accepted, and would not become generally available for another fifty years. So Anson's squadron took the Atlantic the old-fashioned way, on the strength of latitude readings, dead reckoning, and good seamanship. The fleet reached Patagonia intact, after an unusually long crossing, but then a grand tragedy unfolded, founded on the loss of their longitude at sea.

On March 7, 1741, with the holds already stinking of scurvy, Anson sailed the *Centurion* through the Straits Le Maire, from the Atlantic into the Pacific Ocean. As he rounded the tip of Cape Horn, a storm blew up from the west. It shredded the sails and pitched the ship so violently that men who lost their holds were dashed to death. The storm abated from time to time only to regather its strength, and punished the *Centurion* for fifty-eight days without mercy. The winds carried rain, sleet, and snow. And scurvy all the while whittled away at the crew, killing six to ten men every day.

Anson held west against this onslaught, more or less along the parallel at sixty degrees south latitude, until he figured he had gone a full two hundred miles westward, beyond Tierra del Fuego. The other five ships of his squadron had been separated from the *Centurion* in the storm, and some of them were lost forever.

On the first moonlit night he had seen in two months, Anson at last anticipated calm waters, and steered north for the earthly paradise called Juan Fernandez Island. There he knew he would find fresh water for his men, to soothe the dying and sustain the living. Until then, they would have to survive on hope alone, for several days of sailing on the vast Pacific still separated them from the island oasis. But as the haze cleared, Anson sighted *land* right away, dead ahead. It was Cape Noir, at the western edge of Tierra del Fuego.

How could this have happened? Had they been sailing in reverse?

The fierce currents had thwarted Anson. All the time he thought he was gaining westward, he had been virtually treading water. So he had no choice

but to head west *again*, then north toward salvation. He knew that if he failed, and if the sailors continued dying at the same rate, there wouldn't be enough hands left to man the rigging.

According to the ship's log, on May 24, 1741, Anson at last delivered the *Centurion* to the latitude of Juan Fernandez Island, at thirty-five degrees south. All that remained to do was to run down the parallel to make harbor. But which way should he go? Did the island lie to the east or to the west of the *Centurion's* present position?

That was anybody's guess.

Anson guessed west, and so headed in that direction. Four more desperate days at sea, however, stripped him of the courage of his conviction, and he turned the ship around.

Forty-eight hours after the *Centurion* began beating east along the thirtyfifth parallel, land was sighted! But it showed itself to be the impermeable, Spanish-ruled, mountain-walled coast of Chile. This jolt required a onehundred-eighty-degree change in direction, and in Anson's thinking. He was forced to confess that he had probably been within hours of Juan Fernandez Island when he abandoned west for east. Once again, the ship had to retrace her course.

On June 9, 1741, the *Centurion* dropped anchor at last at Juan Fernandez. The two weeks of zigzag searching for the island had cost Anson an additional eighty lives. Although he was an able navigator who could keep his ship at her proper depth and protect his crew from mass drowning, his delays had given scurvy the upper hand. Anson helped carry the hammocks of sick sailors ashore, then watched helplessly as the scourge picked off his men one by one ... by one by one, until more than half of the original five hundred were dead and gone.

3. Adrift in a Clockwork Universe

One night I dreamed I was locked in my Father's watch With Ptolemy and twenty-one ruby stars Mounted on spheres and the Primum Mobile Coiled and gleaming to the end of space And the notched spheres eating each other's rinds To the last tooth of time, and the case closed. —john ciardi, "My Father's Watch"

As Admiral Shovell and Commodore Anson showed, even the best sailors lost their bearings once they lost sight of land, for the sea offered no useful clue about longitude. The sky, however, held out hope. Perhaps there was a way to read longitude in the relative positions of the celestial bodies.

The sky turns day to night with a sunset, measures the passing months by the phases of the moon, and marks each season's change with a solstice or an equinox. The rotating, revolving Earth is a cog in a clockwork universe, and people have told time by its motion since time began.

When mariners looked to the heavens for help with navigation, they found a combination compass and clock. The constellations, especially the Little Dipper with the North Star in its handle, showed them where they were going by night—provided, of course, the skies were clear. By day, the sun not only gave direction but also told them the time if they followed its movements. So they watched it rise orange out of the ocean in the east, change to yellow and to blinding white as it gained altitude, until at midday the sun stopped in its tracks—the way a ball tossed in the air pauses momentarily, poised between ascent and descent. That was the noon siren.

They set their sandglasses by it every clear day. Now all they needed was some astronomical event to tell them the time somewhere else. If, for example, a total lunar eclipse was predicted for midnight over Madrid, and sailors bound for the West Indies observed it at eleven o'clock at night their time, then they were one hour earlier than Madrid, and therefore fifteen degrees of longitude west of that city.

Solar and lunar eclipses, however, occurred far too rarely to provide any meaningful aid to navigation. With luck, one could hope to get a longitude fix once a year by this technique. Sailors needed an everyday heavenly occurrence.

As early as 1514, the German astronomer Johannes Werner struck on a way to use the motion of the moon as a location finder. The moon travels a distance roughly equal to its own width every hour. At night, it appears to walk through the fields of fixed stars at this stately pace. In the daytime (and the moon is up in the daytime for half of every month) it moves toward or away from the sun.

Werner suggested that astronomers should map the positions of the stars along the moon's path and predict when the moon would brush by each one—on every moonlit night, month to month, for years to come. Also the relative positions of the sun and moon through the daylight hours should be similarly mapped. Astronomers could then publish tables of all the moon's meanderings, with the time of each star meeting predicted for one place— Berlin, perhaps, or Nuremberg—whose longitude would serve as the zerodegree reference point. Armed with such information, a navigator could compare the time he observed the moon near a given star with the time the same conjunction was supposed to occur in the skies over the reference location. He would then determine his longitude by finding the difference in hours between the two places, and multiplying that number by fifteen degrees.

The main problem with this "lunar distance method" was that the positions of the stars, on which the whole process depended, were not at all well known. Then, too, no astronomer could predict exactly where the moon would be from one night or day to the next, since the laws that governed the moon's motion still defied detailed understanding. And besides, sailors had no accurate instruments for measuring moon-to-star distances from a rolling ship. The idea was way ahead of its time. The quest for another cosmic time cue continued.

In 1610, almost one hundred years after Werner's immodest proposal, Galileo Galilei discovered from his balcony in Padua what he thought was the sought-after clock of heaven. As one of the first to turn a telescope to the sky, Galileo encountered an embarrassment of riches there: mountains on the moon, spots on the sun, phases of Venus, a ring around Saturn (which he mistook for a couple of close-set moons), and a family of four satellites orbiting the planet Jupiter the way the planets orbit the sun. Galileo later named these last the Medicean stars. Having thus used the new moons to curry political favor with his Florentine patron, Cosimo de' Medici, he soon saw how they might serve the seaman's cause as well as his own.

Galileo was no sailor, but he knew of the longitude problem—as did every natural philosopher of his day. Over the next year he patiently observed the moons of Jupiter, calculating the orbital periods of these satellites, and counting the number of times the small bodies vanished behind the shadow of the giant in their midst. From the dance of his planetary moons, Galileo worked out a longitude solution. Eclipses of the moons of Jupiter, he claimed, occurred one thousand times annually—and so predictably that one could set a watch by them. He used his observations to create tables of each satellite's expected disappearances and reappearances over the course of several months, and allowed himself dreams of glory, foreseeing the day when whole navies would float on his timetables of astronomical movements, known as ephemerides.

Galileo wrote about his plan to King Philip III of Spain, who was offering a fat life pension in ducats to "the discoverer of longitude." By the time Galileo submitted his scheme to the Spanish court, however, nearly twenty years after the announcement of the prize in 1598, poor Philip had been worn down by crank letters. His staff rejected Galileo's idea on the grounds that sailors would be hard-pressed just to see the satellites from their vessels—and certainly couldn't hope to see them often enough or easily enough to rely on them for navigation. After all, it was never possible to view the hands of the Jupiter clock during daylight hours, when the planet was either absent from the sky or overshadowed by the sun's light.

Nighttime observations could be carried on for only part of the year, and then only when skies were clear. In spite of these obvious difficulties, Galileo had designed a special navigation helmet for finding longitude with the Jovian satellites. The headgear—the *cel-atone*—has been compared to a brass gas mask in appearance, with a telescope attached to one of the eyeholes. Through the empty eyehole, the observer's naked eye could locate the steady light of Jupiter in the sky. The telescope afforded the other eye a look at the planet's moons.

An inveterate experimenter, Galileo took the contraption out on the harbor of Livorno to demonstrate its practicability. He also dispatched one of his students to make test runs aboard a ship, but the method never gained adherents. Galileo himself conceded that, even on land, the pounding of one's heart could cause the whole of Jupiter to jump out of the telescope's field of view.

Nevertheless, Galileo tried to peddle his method to the Tuscan government and to officials in the Netherlands, where other prize money lay unclaimed. He did not collect any of these funds, although the Dutch gave him a gold chain for his efforts at cracking the longitude problem.

Galileo stuck to his moons (now rightly called the Galilean satellites) the rest of his life, following them faithfully until he was too old and too blind to see them any longer. When Galileo died in 1642, interest in the satellites of Jupiter lived on. Galileo's method for finding longitude at last became generally accepted after 1650—but only on land. Surveyors and cartographers used Galileo's technique to redraw the world. And it was in the arena of mapmaking that the ability to determine longitude won its first great victory. Earlier maps had underestimated the distances to other continents and exaggerated the outlines of individual nations. Now global dimensions could be set, with authority, by the celestial spheres. Indeed, King Louis XIV of France, confronted with a revised map of his domain based on accurate longitude measurements, reportedly complained that he was losing more territory to his astronomers than to his enemies.

The success of Galileo's method had mapmakers clamoring for further refinements in predicting eclipses of the Jovian satellites. Greater precision in the timing of these events would permit greater exactitude in charting. With the borders of kingdoms hanging in the balance, numerous astronomers found gainful employment observing the moons and improving the accuracy of the printed tables. In 1668, Giovanni Domenico Cassini, a professor of astronomy at the University of Bologna, published the best set yet, based on the most numerous and most carefully conducted observations. Cassini's well-wrought ephemerides won him an invitation to Paris to the court of the Sun King.

Louis XIV, despite any disgruntlement about his diminishing domain, showed a soft spot for science. He had given his blessing to the founding, in 1666, of the French Academic Royale des Sciences, the brainchild of his chief minister, Jean Colbert. Also at Colbert's urging, and under the ever-increasing pressure to solve the longitude problem, King Louis approved the building of an astronomical observatory in Paris. Colbert then lured famous foreign scientists to France to fill the ranks of the Academic and man the observatory. He imported Christiaan Huygens as charter member of the former, and Cassini as director of the latter. (Huygens went home to Holland eventually and traveled several times to England in relation to his work on longitude, but Cassini grew roots in France and never left. Having become a French citizen in 1673, he is remembered as a French astronomer, so that his name today is given as Jean Dominique as often as Giovanni Domenico.)

From his post at the new observatory, Cassini sent envoys to Denmark, to the ruins of Uraniborg, the "heavenly castle" built by Tycho Brahe, the greatest naked-eye astronomer of all time. Using observations of Jupiter's satellites taken at these two sites, Paris and Uraniborg, Cassini confirmed the latitude and longitude of both. Cassini also called on observers in Poland and Germany to cooperate in an international task force devoted to longitude measurements, as gauged by the motions of Jupiter's moons.

It was during this ferment of activity at the Paris Observatory that visiting Danish astronomer Ole Roemer made a startling discovery: The eclipses of all four Jovian satellites would occur ahead of schedule when the Earth came closest to Jupiter in its orbit around the sun. Similarly, the eclipses fell behind the predicted schedules by several minutes when the Earth moved farthest from Jupiter. Roemer concluded, correctly, that the explanation lay in the velocity of light. The eclipses surely occurred with sidereal regularity, as astronomers claimed. But the time that those eclipses could be observed on Earth depended on the distance that the light from Jupiter's moons had to travel across space.

Until this realization, light was thought to get from place to place in a twinkling, with no finite velocity that could be measured by man. Roemer now recognized that earlier attempts to clock the speed of light had failed