


PRINCIPLES OF 
NEUROBIOLOGY 



http://taylorandfrancis.com


PRINCIPLES OF 
NEUROBIOLOGY 

SECOND EDITION 

LIQUN LUO 



 

 
 

 
 

 
 

 

 

    

 

 

 

Second edition published 2021 
by CRC Press 
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 
and by CRC Press 
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 

© 2021 Taylor & Francis Group, LLC 
First edition published by Garland Science (Taylor & Francis Group, LLC) 2016 
CRC Press is an imprint of Taylor & Francis Group, LLC 

Tis book contains information obtained from authentic and highly regarded sources. While all 
reasonable eforts have been made to publish reliable data and information, neither the author[s] 
nor the publisher can accept any legal responsibility or liability for any errors or omissions that may 
be made. Te publishers wish to make clear that any views or opinions expressed in this book by 
individual editors, authors, or contributors are personal to them and do not necessarily refect the 
views/opinions of the publishers. Te information or guidance contained in this book is intended 
for use by medical, scientifc, or health-care professionals and is provided strictly as a supplement to 
the medical or other professional’s own judgment, their knowledge of the patient’s medical history, 
relevant manufacturer’s instructions, and the appropriate best practice guidelines. Because of the 
rapid advances in medical science, any information or advice on dosages, procedures, or diagnoses 
should be independently verifed. Te reader is strongly urged to consult the relevant national drug 
formulary and the drug companies’ and device or material manufacturers’ printed instructions, and 
their websites, before administering or utilizing any of the drugs, devices or materials mentioned in 
this book. Tis book does not indicate whether a particular treatment is appropriate or suitable for a 
particular individual. Ultimately it is the sole responsibility of the medical professional to make his or 
her own professional judgments, so as to advise and treat patients appropriately. Te authors and 
publishers have also attempted to trace the copyright holders of all material reproduced in this 
publication and apologize to copyright holders if permission to publish in this form has not been 
obtained. If any copyright material has not been acknowledged please write and let us know so we 
may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter 
invented, including photocopying, microflming, and recording, or in any information storage or retrieval 
system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, access www.copyright.com or 
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. 
For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk 

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used 
only for identifcation and explanation without intent to infringe. 

Library of Congress Cataloging-in-Publication Data 
Names: Luo, Liqun, 1966– author. 
Title: Principles of neurobiology / Liqun Luo. 
Description: Second edition. | Boca Raton : Garland Science, 2020. | Includes bibliographical references 

and index. | Summary: “Principles of Neurobiology, Second Edition presents the major concepts of 
neuroscience with an emphasis on how we know what we know. Te text is organized around a series of 
key experiments to illustrate how scientifc progress is made and helps upper-level undergraduate and 
graduate students discover the relevant primary literature. Written by a single author in a clear and 
consistent writing style, each topic builds in complexity from electrophysiology to molecular genetics to 
systems level in a highly integrative approach. Students can fully engage with the content via thematically 
linked chapters and will be able to read the book in its entirety in a semester-long course. Principles of 
Neurobiology is accompanied by a rich package of online student and instructor resources including 
animations, fgures in PowerPoint, and a Question Bank for adopting instructors”— Provided by publisher. 

Identifers: LCCN 2020023964 (print) | LCCN 2020023965 (ebook) | ISBN 9780815346050 (paperback) | ISBN 
9780367514716 (hardback) | ISBN 9781003053972 (ebook) 

Subjects: LCSH: Neurobiology. 
Classifcation: LCC QP355.2 .L86 2020 (print) | LCC QP355.2 (ebook) | DDC 612.8—dc23 
LC record available at https://lccn.loc.gov/2020023964 
LC ebook record available at https://lccn.loc.gov/2020023965 

ISBN: 9780367514716 (hbk) 
ISBN: 9780815346050 (pbk) 
ISBN: 9781003053972 (ebk) 

Typeset in Utopia Std and Avenir LT Std 
by Carol Pierson, Chernow Editorial Services, Inc. 

Visit the companion website: www.crcpress.com/cw/luo 

http://www.crcpress.com
mail to:mpkbookspermissions@tandf.co.uk
http://www.copyright.com
https://lccn.loc.gov
https://lccn.loc.gov


To Lubert Stryer—my mentor, colleague, and dear friend. 



http://taylorandfrancis.com


 

 

 

  

 

 

 

 

 

 

PREFACE 
TO THE SECOND EDITION 

Neurobiology has witnessed rapid advances in the past fve years, thanks in part 
to the support from the U.S. National Institutes of Health’s BRAIN Initiative and 
similar initiatives internationally. To give a few examples: deciphering single-cell 
transcriptomes across the nervous system has produced valuable information 
regarding the development and function of specifc cell types and has shed light 
on what constitutes a cell type in complex brain regions. Technological advances 
in neural circuit dissection, from genetics to anatomy and neurophysiology, have 
enabled better understanding of many neurobiological processes, from sensation 
of internal organs to the organization of memory systems in the brain. Break-
through nucleic acid–based therapies have enabled treatment of devastating neuro-
degenerative disorders. 

Te second edition of Principles of Neurobiology intends to capture these and 
many other new advances while maintaining its discovery–based approach: to 
teach students how knowledge is obtained. Tis new edition has also added or 
strengthened many features, thanks to feedback from students and instructors 
around the globe who have used the frst edition in their courses. Major changes 
include: 

• New sections on theory and modeling in Chapter 14 to refect an increas-
ingly important role theory and modeling play in modern neurobiology. 
Tese new sections encompass a wide range of topics from neuronal 
encoding and decoding to neural circuit architectures and learning algo-
rithms, further expanding the horizon of students of neurobiology. 

• Expanded coverage of motor and regulatory systems in separate chapters. 
Te new motor systems chapter has more in-depth discussions of brain-
stem, cerebellum, basal ganglia, and parietal and frontal cortex in motor 
coordination, planning, and sensorimotor integration. Te new regulatory 
systems chapter includes new advances on the interoceptive system and 
the links between homeostatic need and motivated behavior. 

• Open questions at the end of each chapter to stimulate students and 
researchers to explore new terrains. 

I would also take this opportunity to highlight several features for students and 
instructors: 

• Te current sequence of chapters refects the course I have been teaching 
at Stanford, but no single linear sequence can capture the rich intercon-
nections in neurobiology. Embedded in each chapter are many refer-
ences to other sections and chapters to enable students to make such 
links. In the electronic version of the textbook, such connections are just 
one click away. 

• Subsets of chapters can be reorganized to cover a variety of courses. For 
example, Chapters 5, 7, and 11 can be used for a developmental neuro-
biology course. Relevant sections in Chapter 4, 6, 8, 9, 10, and 11 can be 
used for a systems neurobiology course. Both courses can beneft from the 
basic foundations in Chapters 1–3, the disease connections in Chapter 12, 
and the evolutionary perspective in Chapter 13. Students can beneft from 
connections with the rest of the neurobiology. Finally, relevant sections of 
the entire textbook can be used in a molecular and cellular neurobiology 
course. 

• Chapter 14 contains systematic descriptions of major techniques used in 
neurobiology, from molecular genetics to circuit and behavioral analyses, 



 

 

 
 
 

 
 
 

 

 viii PREFACE TO THE SECOND EDITION 

and now theory and modeling, and are frequently referred to throughout 
the text. Students should study the relevant sections in Chapter 14 as often 
as needed to enhance their understanding of earlier chapters. 

• Material in “Boxes” are just as important as the main text. Boxes are cre-
ated so important materials can be discussed in more depth, with addi-
tional examples, or from a diferent perspective, without interrupting the 
storylines of the main text. 

• Students interested in fnding out more about how discoveries are made 
are highly encouraged to study the primary literature on subjects of inter-
est. Tese are cited in the fgure legends and in “Further Reading” at the 
end of each chapter (often complementary). 

I would like to extend my gratitude to numerous students and instructors who 
have used frst edition of Principles of Neurobiology for their feedback and encour-
agement. I thank the previous Garland Science team, in particular Denise Schanck, 
for encouraging me to work on this new edition. I am grateful to Chuck Crumly, my 
editor from CRC Press, whose unwavering support and sage advice have guided me 
throughout the journey. I am continually indebted to Nigel Orme, whose expert 
illustrations have made the textbook vivid; working with Nigel on the fgures 
added much fun. I thank many colleagues (see the Acknowledgments) for their 
expert review and critiques. I owe much gratitude to my PhD student Andrew 
Shuster, who carefully edited the entire textbook and substantially improved its 
clarity and accuracy. I thank Jordan Wearing, whose remarkable organization skills 
and attention to details have enabled smooth transition from manuscripts to fnal 
production. I also thank Barbara Chernow and her team for the superb produc-
tion of the fnal pages. Finally, I am very grateful to the continuous support of my 
wife, Charlene Liao, and our two daughters, Connie and Jessica. 

Liqun Luo 
April 2020 



 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

PREFACE 
TO THE FIRST EDITION 

Neurobiology has never seen a more exciting time. As the most complex organ 
of our body, the brain endows us the ability to sense, think, remember, and act. 
Tanks to the conceptual and technical advances in recent years, the pace of dis-
covery in neurobiology is continuously accelerating. New and exciting fndings 
are reported every month. Traditional boundaries between molecular, cellular, 
systems, and behavioral neurobiology have been broken. Te integration of devel-
opmental and functional studies of the nervous system has never been stronger. 
Physical scientists and engineers increasingly contribute to fundamental discov-
eries in neurobiology. Yet we are still far from a satisfying understanding of how 
the brain works, and from converting this understanding into efective treatment 
of brain disorders. I hope to convey the excitement of neurobiology to students, 
to lay the foundation for their appreciation of this discipline, and to inspire them 
to make exciting new discoveries in the coming decades. 

Tis book is a refection of my teaching at Stanford during the past 18 years. 
My students—and the intended audience of this book—include upper division 
undergraduates and beginning graduate students who wish to acquire an in-
depth knowledge and command of neurobiology. While most students reading 
this book may have a biology background, some may come from physical sciences 
and engineering. I have discovered that regardless of a student’s background, it is 
much more efective—and much more interesting—to teach students how knowl-
edge has been obtained than the current state of knowledge. Tat is why I have 
taken this discovery-based teaching approach from lecture hall to textbook. 

Each chapter follows a main storyline or several sequential storylines. Tese 
storylines are divided by large section headings usually titled with questions that 
are then answered by a series of summarizing subheadings with explanatory text 
and fgures. Key terms are highlighted in bold and are further explained in an 
expanded glossary. Te text is organized around a series of key original experi-
ments, from classic to modern, to illustrate how we have arrived at our current 
state of understanding. Te majority of the fgures are based on those from origi-
nal papers, thereby introducing students to the primary literature. Instead of just 
covering the vast number of facts that make up neurobiology in this day and age, 
this book concentrates on the in-depth study of a subset of carefully chosen topics 
that illustrate the discovery process and resulting principles. Te selected topics 
span the entire spectrum of neurobiology, from molecular and cellular to systems 
and behavioral. Given the relatively small size of the book, students will be able 
to study much or all of the book in a semester, allowing them to gain a broad grasp 
of modern neurobiology. 

Tis book intentionally breaks from the traditional division of neuroscience 
into molecular, cellular, systems, and developmental sections. Instead, most chap-
ters integrate these approaches. For example, the chapter on ‘Vision’ starts with 
a human psychophysics experiment demonstrating that our rod photoreceptors 
can detect a single photon, as well as a physiology experiment showing the elec-
trical response of the rod to a single photon. Subsequent topics include molecular 
events in photoreceptors, cellular and circuit properties of the retina and the 
visual cortex, and systems approaches to understanding visual perception. Like-
wise, ‘Memory, Learning, and Synaptic Plasticity’ integrates molecular, cellular, 
circuit, systems, behavioral, and theoretical approaches with the common goal of 
understanding what memory is and how it relates to synaptic plasticity. Te two 
chapters on development intertwine with three chapters on sensory and motor 
systems to help students appreciate the rich connections between the devel-
opment and function of the nervous system. All chapters are further linked by 
abundant cross-referencing through the text. Tese links reinforce the notion 
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that topics in neurobiology form highly interconnected networks rather than a 
linear sequence. Finally and importantly, Chapter 13 (‘Ways of Exploring’) is 
dedicated to key methods in neurobiology research and is extensively referenced 
in all preceding chapters. Students are encouraged to study the relevant methods 
in Chapter 13 when they frst encounter them in Chapters 1–12. 

Tis book would not have been possible without the help of Lubert Stryer, my 
mentor, colleague, and dear friend. From inception to completion, Lubert has 
provided invaluable support and advice. He has read every single chapter (often 
more than once) and has always provided a balanced dose of encouragement and 
criticism, from strategic planning to word choice. Lubert’s classic Biochemistry 
textbook was a highlight in my own undergraduate education and has continued 
to inspire me throughout this project. 

I thank Howard Schulman, Kang Shen, and Tom Clandinin, who, along with 
Lubert, have been my co-instructors for neurobiology courses at Stanford and 
from whom I have learned a tremendous amount about science and teaching. 
Students in my classes have ofered valuable feedback that has improved my 
teaching and has been incorporated into the book. I am highly appreciative of the 
past and current members of my lab, who have taught me more than I have taught 
them and whose discoveries have been constant sources of inspiration and joy. I 
gratefully acknowledge the National Institutes of Health and the Howard Hughes 
Medical Institute for generously supporting the research of my lab. 

Although this book has a single author, it is truly the product of teamwork with 
Garland Science. Denise Schanck has provided wise leadership throughout the 
journey. Janet Foltin in the initial phase and Monica Toledo through most of the 
project have provided much support and guidance, from obtaining highly infor-
mative reviews of early drafts to organizing teaching and learning resources. I 
am indebted to Kathleen Vickers for expert editing; her attention to detail and 
demand for clarity have greatly improved my original text. I owe the illustra-
tions to Nigel Orme, whose combined artistic talent and scientifc understanding 
brought to life concepts from the text. Georgina Lucas’s expert page layout has 
seamlessly integrated the text and fgures. I also thank Michael Morales for pro-
ducing the enriching videos, and Adam Sendrof and his staf for reaching out to 
the readers. Working with Garland has been a wonderful experience, and I thank 
Bruce Alberts for introducing Garland to me. 

Finally, I am very grateful for the support and love from my wife, Charlene 
Liao, and our two daughters, Connie and Jessica. Writing this textbook has con-
sumed a large portion of my time in the past few years; indeed, the textbook has 
been a signifcant part of our family life and has been a frequent topic of dinner 
table conversation. Jessica has been my frequent sounding board for new ideas 
and storylines, and I am glad that she has not minded an extra dose of neurobiol-
ogy on top of her demanding high-school courses and extracurricular activities. 

I welcome feedback and critiques from students and readers! 

Liqun Luo 
April 2015 



 

 

 

 

  
  
  

   
   

 

 

NOTE ON GENE AND PROTEIN NOMENCLATURE 
Tis book mostly follows the unifed convention of Molecular Biology of the Cell 
6th Edition by Alberts et al. (Garland Science, 2015) for naming genes. Regardless 
of species, gene names and their abbreviations are all in italics, with the frst letter 
in upper case and the rest of the letters in lower case. All protein names are in 
roman, and their cases follow the consensus in the literature. Proteins identifed 
by biochemical means are usually all in lower case; proteins identifed by genetic 
means or by homology with other genes usually have the frst letter in upper case; 
protein acronyms usually are all in upper case. Te space that separates a letter 
and a number in full names includes a hyphen, and in abbreviated names is omit-
ted entirely. 

Te table below summarizes the ofcial conventions for individual species and 
the unifed conventions that we shall use in this book. 

Organism Species-Specifc Con vention Unifed Con vention Used 
in this Book 

Gene Protein Gene Protein 

Mouse Syt1 synaptotagmin I Syt1 Synaptotagmin-1 

Mecp2 MeCP2 Mecp2 MeCP2 

Human MECP2 MeCP2 Mecp2 MeCP2 

Caenorhabditis unc-6 UNC-6 Unc6 Unc6 

Drosophila sevenless 
(named after 
recessive 
phenotype) 

Sevenless Sevenless Sevenless 

Notch (named 
after dominant 
mutant 
phenotype) 

Notch Notch Notch 

Other 
organisms 
(e.g. jellyfsh) 

Green 
fuorescent 
protein (GFP) 

Gfp GFP 

RESOURCES FOR INSTRUCTORS AND STUDENTS 
Te teaching and learning resources for instructors and students are available 
online. We hope these resources will enhance student learning and make it easier 
for instructors to prepare dynamic lectures and activities for the classroom. 

Instructor Resources 

Instructor Resources are available on the Instructor Resources Download Hub, 
located at www.routledgetextbooks.com/textbooks/instructor_downloads/. Tese 
resources are password-protected and available only to instructors adopting the 
book. 

Art of Principles of Neurobiology 
All fgures from the book are available in two convenient formats: PowerPoint® 
and PDF. Tey have been optimized for display on a computer. 

Figure-Integrated Lecture Outlines 
Te section headings, concept headings, and fgures from the text have been inte-
grated into PowerPoint presentations. Tese will be useful for instructors who 
would like a head start creating lectures for their course. Like all of our PowerPoint 
presentations, the lecture outlines can be customized. For example, the content of 

http://www.routledgetextbooks.com


 
 

 

 

 

 

 
 

 

  

 xii RESOURCES FOR INSTRUCTORS AND STUDENTS 

these presentations can be combined with videos and questions from the book 
or Question Bank, in order to create unique lectures that facilitate interactive 
learning. 

Animations and Videos 
All animations and videos that are available to students are also available to instruc-
tors. Tey can be downloaded from the Instructor Hub in MP4 format. Te movies are 
related to specifc chapters, and callouts to the movies are highlighted in green through-
out the textbook. 

Question Bank 
Written by Elizabeth Marin (University of Cambridge), and Melissa Coleman 
(Claremont McKenna, Pitzer, and Scripps Colleges), the Question Bank includes 
a variety of question formats: multiple choice, fll-in-the-blank, true-false, match-
ing, essay, and challenging ‘thought’ questions. Tere are approximately 40–50 
questions per chapter, and a large number of the multiple-choice questions will 
be suitable for use with personal response systems (that is, clickers). Te Question 
Bank provides a comprehensive sampling of questions that require the student to 
refect upon and integrate information, and can be used either directly or as inspi-
ration for instructors to write their own test questions. 

Student Resources 

Resources for students are available on the books Companion Website, located at 
www.crcpress.com/cw/luo. 

Art of Principles of Neurobiology 
All fgures from the book are available in two convenient formats: PowerPoint® 
and PDF. Tey have been optimized for display on a computer. 

Animations and Videos 
Tere are over 40 narrated movies, covering a range of neurobiology topics, which 
review key concepts and illuminate the experimental process. 

Flashcards 
Each chapter contains fashcards, built into the student website, that allow stu-
dents to review key terms from the text. 

Glossary 
Te comprehensive glossary of key terms from the book is online. 

Blog 
A blog associated with Principles of Neurobiology companion website has monthly 
new entries, which introduce students to the latest discoveries in research and 
extend the concepts discussed in the textbook. 

ADDITIONAL NOTES ON HOW TO USE THIS BOOK 
• Key terms in the text are highlighted in bold font, with glossary entries. 
• Extensive cross-references of sections and fgures help strengthen the 

connections between diferent parts of neurobiology. In the e-book, hyper-
links have been created for these cross-references so students can click 
the link to study a related fgure or a section in a diferent part of the book, 
and click again to return to the original page. 

• Students are particularly encouraged to study the relevant sections in 
Chapter 14 when referenced in earlier chapters. 

• To emphasize the discovery–based approach, most fgures have been 
adapted from the original literature. For simplicity, error bars and statis-
tics have been omitted for most fgures. Interested students can fnd such 
details by following the citations in fgure legends. 

http://www.crcpress.com
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CHAPTER 1 
The brain is a world consisting of a 

An Invitation to 
Neurobiology 

How does the nervous system control behavior? How do we sense the environ-
ment? How does the brain create a representation of the world out of the sensa-
tions? How much of our brain function and behavior is shaped by our genes, 
and how much refects the environment in which we grew up? How is the brain 
wired up during development? What changes occur in the brain when we learn 
something new? How have nervous systems evolved? What goes wrong in brain 
disorders? 

We are about to embark on a journey to explore these questions, which have 
fascinated humanity for thousands of years. Our ability to address these questions 
experimentally has greatly expanded in recent years. What we currently know 
about the answers to these questions comes mostly from fndings made in the 
past 50 years; in the next 50 years, we will likely learn more about the brain and its 
control of behavior than in all of prior human history. We are at an exciting time 
as students of neurobiology, and it is my hope that many readers of this book will 
be at the forefront of groundbreaking discoveries. 

number of unexplored continents 
and great stretches of unknown 
territory. 

Santiago Ramón y Cajal 

PRELUDE: NATURE AND NURTURE IN BRAIN 
FUNCTION AND BEHAVIOR 
As we begin this journey, let’s discuss one of the questions we raised regarding 
the contributions of genes and environment to our brain function and behavior. 
We know from experience that both genetic inheritance (nature) and environ-
mental factors (nurture) make important contributions, but how much does each 
contribute? How do we begin to tackle such a complex question? In scientifc 
research, asking the right questions is often a critical step toward obtaining the 
right answers. As evolutionary geneticist Teodosius Dobzhansky put it, “Te ques-
tion about the roles of the genotype and the environment in human development 
must be posed thus: To what extent are the diferences observed among people 
conditioned by the diferences of their genotypes and by the diferences between 
the environments in which people were born, grew and were brought up?” 

1.1 Human twin studies can reveal the contributions of nature 
and nurture 

Francis Galton frst coined the phrase nature versus nurture in the nineteenth 
century. He also introduced a powerful method for studying this conundrum: 
statistical analysis of human twins. Identical twins (Figure 1-1), or monozygotic 
twins, share 100% of their genes in almost all cells, as they are products of the 
same fertilized egg, or zygote. One can compare specifc traits among thousands 
of pairs of identical twins to see how correlated they are within each pair. For 
example, if we compare the intelligence quotients (IQs)—an estimate of general 
intelligence—of any two random people in the population, the correlation is 0. 
(Correlation is a statistic of resemblance that ranges from 0, indicating no resem-
blance, to 1, indicating perfect resemblance.) Tis correlation is 0.86 for identical 
twins (Figure 1-2), a striking similarity. However, identical twins also usually grow 



 

 

 

 
  

 

 

 

 

 

 

 
  

 

 2 CHAPTER 1 An Invitation to Neurobiology 

Figure 1-1 Identical (monozygotic) twins. 
Identical twins develop from a single 
fertilized egg and therefore share 100% 
of their genes in almost all cells (some 
lymphocytes are an exception due to 
stochasticity in DNA recombination). 
Most identical twins also share similar 
childhood environments. (Courtesy of 
Christopher J. Potter.) 

up in the same environment, so this correlation alone does not help us distinguish 
between the contributions of genes and the environment. 

Fortunately, human populations provide a second group that allows research-
ers to tease apart the infuence of genetic and environmental factors. Noniden-
tical (fraternal) twins occur more often than identical twins in most human 
populations. Tese are called dizygotic twins because they originate from two 
independent eggs fertilized by two independent sperm. As full siblings, dizygotic 
twins are 50% identical in their genes according to Mendel’s laws of inheritance. 
However, like monozygotic twins, dizygotic twins usually share very similar pre-
natal and postnatal environments. Tus, the diferences between traits exhibited 
by monozygotic and dizygotic twins should result from the diferences in 50% of 
their genes. In our example, the correlation of IQ scores between dizygotic twins 
is 0.60 (Figure 1-2). 

Behavioral geneticists use the term heritability to describe the contribution 
of genetic diferences to trait diferences. Heritability is defned as the diference 
between the correlations of monozygotic and dizygotic twins multiplied by 2 
(because the genetic diference is 50% between monozygotic and dizygotic twins). 
Tus, the heritability of IQ is (0.86 − 0.60) × 2 = 0.52. Roughly speaking, then, 
genetic diferences account for about half of the variation in IQ scores within 
human populations. Traditionally, the non-nature component has been pre-
sumed to come from environmental factors. However, “environmental factors” as 
calculated in twin studies include all factors not inherited from the parents’ DNA. 
Tese include the postnatal environment, which is what we typically think of as 
nurture, but also prenatal environment, stochasticity in developmental processes, 
somatic mutations (alterations in DNA sequences in somatic cells after fertiliza-
tion), and gene expression changes due to epigenetic modifcations. Epigenetic 

(A) correlation of IQ scores among pairs (B) random pair R = 0 dizygotic twins R = 0.60 monozygotic twins R = 0.86 
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Figure 1-2 Twin studies for determining genetic and environmental highly accurate. (B) Simulation of IQ score correlation plots for 5000 
contributions to intelligence quotient (IQ). (A) Correlation, or R value, pairs of unrelated individuals (R = 0), 5000 pairs of dizygotic twins 
of IQ scores for 4672 pairs of monozygotic twins and 5546 pairs of (R = 0.60), and 5000 pairs of monozygotic twins (R = 0.86). The x 
dizygotic twins. The correlation between the IQ scores of randomly and y axes of a given dot represent the IQ scores of one pair. The 
selected pairs of individuals is zero. The difference in correlation simulations assume a normal distribution of IQ scores (mean = 100, 
between monozygotic and dizygotic twins can be used to calculate standard deviation = 15). (A, based on Bouchard TJ & McGue M 
the heritability of traits. The large sample size makes these estimates [1981] Science 212:1055–1059.) 



 
 

 

 

 

 
 

 

 

 

  

  
  

  

3 Prelude: Nature and nurture in brain function and behavior 

modifcations refer to changes made to DNA and chromatin that do not modify 
DNA sequences but can alter gene expression—these include DNA methylation 
and various modifcations of histones, the protein component of chromatin. As 
we will learn later, all of these factors contribute to nervous system development, 
function, and behavior. 

Twin studies have been used to estimate the heritability of many human traits, 
ranging from height (~90%) to the chance of developing schizophrenia (60–80%). 
An important caveat regarding these estimates is that most human traits result 
from complex interactions between genes and the environment, and heritability 
itself can change with the environment. Still, twin studies ofer valuable insights 
into the relative contributions of genes and nongenetic factors to many aspects of 
brain function and dysfunction in a given environment. Te completion of the 
Human Genome Project and the development of tools permitting detailed exam-
ination of the genome sequence data, combined with a long history of medical 
and psychological studies of human subjects, have made our own species the 
subject of a growing body of neurobiological research (Section 14.5). However, 
mechanistic understanding of how genes and the environment infuence brain 
development, function, and behavior requires experimental manipulations that 
often can be carried out only in animal models. Te use of vertebrate and inverte-

Figure 1-3 Penguin feeding. Thebrate model species (Sections 14.1–14.4) has yielded much of what we have learned 
instinctive behaviors of an adult about the brain and behavior. Many principles of neurobiology revealed by exper-
penguin and its offspring photographed in

iments on specifc model species have turned out to operate in a wide variety of Antarctica, 2009. Top, the young penguin 
organisms, including humans. asks for food by bumping its beak against 

its parent’s beak. Bottom, the parent 
releases the food into the young penguin’s 1.2 Examples of nature: animals exhibit instinctive behaviors 
mouth. (Courtesy of Lubert Stryer.) 

Animals exhibit remarkable instinctive behaviors that help them fnd food, avoid 
danger, seek mates, and nurture their progeny. For example, a baby penguin, 
directed by its food-seeking instinct, bumps its beak against its parent’s beak to 
remind its parent to feed it; in response, the parent instinctively releases the food 
it has foraged from the sea to feed its baby (Figure 1-3). 

Instinctive behaviors can be elicited by very specifc sensory stimuli. For 
instance, experimenters have tested the responses of young chicks to an object 
resembling a bird in fight, with wings placed close to either end of the head–tail 
axis. When moved in one direction, the object looks like a short-necked, long-
tailed hawk; when moved in the other direction, the object looks like a long-
necked, short-tailed goose. Seeing the object overhead, a young chick produces 
diferent responses depending on the direction in which the object moves, run-
ning away when the object resembles a hawk but making no efort to escape when 
the object resembles a goose (Figure 1-4). Tis escape behavior is innate: it 
is with the chick from birth and is likely genetically programmed. Te behavior is 
also stereotypic: diferent chicks exhibit the same escape behavior, with similar 
stimulus specifcity. Once the behavior is triggered, it runs to completion without 

goose hawk 

NO ESCAPE 
RESPONSE RESPONSE 
ELICITED ELICITED 

Figure 1-4 Innate escape response of a 
chick to a hawk. A young chick exhibits 
instinctive escape behavior in response to 
an object moving overhead that resembles 
a short-necked, hawk-like bird; moving the 
pictured object from left to right triggers 
this instinctive behavior. Moving the object 
from right to left so that it resembles a 
long-necked goose does not elicit the 
chick’s escape behavior. (Adapted from 
Tinbergen N [1951] The Study of Instinct. 
Oxford University Press.) 
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further sensory feedback. Neuroethology, a feld of study that emphasizes observ-
ing animal behavior in natural environments, refers to such instinctive behaviors 
as following fxed action patterns. Te essential features of the stimulus that acti-
vates the fxed action pattern are referred to as releasers. 

How do genes and developmental programs specify such specifc instinctive 
behaviors? In Chapter 10, we will explore this question using sexual behavior as 
an example. We will learn about how a single gene in the fruit fy named fruitless 
can exert profound control over many aspects of fruit fy mating behavior. 

1.3 An example of nurture: barn owls adjust their auditory maps 
to match altered visual maps 

Animals also exhibit a remarkable capacity for learning as they adapt to a chang-
ing world. We use the ability of barn owls to adjust their auditory maps to changes 
in their vision to illustrate this capacity. 

Barn owls have superb visual and auditory systems that help them catch prey 
at night when nocturnal rodents are active. In fact, owls can catch prey even in 
complete darkness (Figure 1-5), relying entirely on their auditory system. Tey 

Figure 1-5 Barn owls use their auditory can accurately locate the source of sounds made by prey, based on the small dif-
system to locate prey in complete ference in the time it takes for a sound to reach their left and right ears. Te owl’s 
darkness. The photograph was taken brain creates a map of space using these time diferences, such that activation of 
in the dark with infrared light fashed 

individual nerve cells at specifc positions in this brain map informs the owl of the periodically while the camera shutter 
remained open. (Courtesy of Masakazu physical position of its prey. 
Konishi.) Experiments in which prisms were attached over a juvenile barn owl’s eyes 

(Figure 1-6A) revealed how the owl responds when its auditory and visual maps 
provide conficting information. Normally, the owl’s auditory map matches its 
visual map, such that perceptions of sight and sound direct the owl to the same 
location (Figure 1-6B). Te prisms shift the owl’s visual map 23° to the right. Te 
owl rapidly learns to adjust its motor responses to restore its reaching accuracy on 
visual targets. However, a mismatch occurs between the owl’s visual and auditory 
maps on the frst day after the prisms are placed (Figure 1-6C): sight and sound 
indicate diferent locations to the owl, causing confusion about the prey’s loca-
tion. Te juvenile owl copes with this situation by adjusting its auditory map to 

(A) (B) before prisms (C) 1 day after prisms 

+10 
response to 
auditory stimuli 

L10 R10 20 30 

response to 
visual stimuli–10 

(D) 42 days after prisms (E) 

+10 +10 

L10 R10 L10 R10 30 

–10 –10 

horizontal displacement (degree) 

Figure 1-6 Juvenile barn owls adjust their auditory map to match a (D) After a juvenile owl has worn the prisms for 42 days, its auditory 
displaced visual map after wearing prisms. (A) A barn owl ftted with map has adjusted to match its shifted visual map. (E) The visual 
prisms that shift its visual map. (B) Before the prisms are attached, map shifts back immediately after the prisms are removed, causing 
the owl’s visual map (blue dots) and auditory map (red dots) are a temporary mismatch. This mismatch is corrected as the auditory 
matched near 0°. Each dot represents an experimental measurement map shifts back soon after (not shown). (A, courtesy of Eric Knudsen. 
of an owl’s head orientation in response to an auditory or visual B–E, from Knudsen EI [2002] Nature 417:322–328. With permission 
stimulus presented in the dark. (C) One day after the prisms were from Springer Nature.) 
ftted, the visual map is displaced 23° to the right of the auditory map. 
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match its altered visual map within 42 days after starting to wear the prisms (Fig-
ure 1-6D), eliminating the positional confict between sight and sound. Te owl 
adjusts its strike behavior to accurately target a single location. When the prisms 
are removed, a mismatch recurs (Figure 1-6E), but the owl adjusts its auditory 
map and strike behavior back to their native states shortly afterward. 

Te story of the barn owl is an example of how the nervous system learns to 
cope with a changing world. Neurobiologists use the term neural plasticity to 
refer to changes in the nervous system in response to experience and learning. 
But the story does not end here. Studies have shown that plasticity declines with 
age: juvenile owls have the plasticity required to adjust their auditory map to 
match a visual map displaced by 23°, but owls will have lost this ability by the time 
they reach sexual maturity (Figure 1-7A). Some human learning capabilities, 
such as the ability to learn foreign languages, likewise decline with age. Tus, 
experiments targeted toward improving the plasticity of adult owls may reveal 
strategies for improving the learning abilities of adult humans as well. 

Several ways have been found for adult owls to overcome their limited plas-
ticity in shifting their auditory maps. If an owl experiences adjusting to a 23°-prism 
shift as a juvenile, it can readily readjust to the same prisms as an adult (Figure 
1-7B). Alternatively, even adult owls that cannot adjust to a 23° shift all at once 
can learn to shift their auditory maps if the visual feld displacement is applied 
in small increments. Tus, by taking baby steps, adult owls can eventually reach 
nearly the same shift magnitude as young owls. Once they have learned to shift via 
gradual increments, adult owls can subsequently shift in a single, large step when 
tested several months after returning to normal conditions (Figure 1-7C). 

What are the neurobiological mechanisms underlying these fascinating plas-
ticity phenomena? In Chapters 4 and 6, we will explore the nature of the visual 
and auditory maps. In Chapters 5 and 7, we will study how neural maps are formed 
during development and modifed by experience. And in Section 11.25, we will 
address the mechanism of owls’ map adjustment in the context of memory and 
learning. Before studying these topics, however, we need to learn more basics 
about the brain and its building blocks. We devote the rest of this chapter to pro-
viding an overview of the nervous system and introducing how key historical dis-
coveries helped build the conceptual framework of modern neuroscience. 
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Figure 1-7 Ways to improve the ability of adult barn owls to adjust response to prism attachment as juveniles also shifted their auditory 
their auditory maps. (A) Owls’ ability to adjust their auditory maps to maps as adults (red traces). Two owls with no juvenile experience 
match displaced visual maps declines with age. The y axis quantifes could not shift their maps as adults (blue traces). (C) Adult owls could 
this ability to shift the auditory map, measured by the difference in learn to shift their auditory maps if given small prisms in incremental 
time (μs, or microseconds) it takes for sounds to reach the left and steps, as shown on the left side of the graph. This incremental training 
right ears, which the owl uses to locate objects. Each trace represents enabled adult owls to accommodate a sudden shift to the maximal 
a single owl, and each dot represents the average of auditory map visual displacement of 23° after a period without prisms, as shown on 
shift measured at a specifc time after the prisms were applied. The the right side of the graph. The dotted line at y = 43 μs represents the 
shaded zone indicates a sensitive period, during which owls can easily median shift in juvenile owls in response to a single 23°-prism step. 
adjust their auditory maps in response to visual map displacement. (A & B, after Knudsen EI [2002] Nature 417:322–328. With permission 
Owls older than 200 days have a limited ability to shift their auditory from Springer Nature. C, after Linkenhoker BA & Knudsen EI [2002] 
maps. (B) Three owls that had learned to adjust their auditory maps in Nature 419:293–296. With permission from Springer Nature.) 
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HOW IS THE NERVOUS SYSTEM ORGANIZED? 
For all vertebrate and many invertebrate animals, the nervous system can be 
divided into the central nervous system (CNS) and peripheral nervous system 
(PNS). Te vertebrate CNS consists of the brain and the spinal cord (Figure 
1-8A,B). Both structures are bilaterally symmetric; the two sides of the brain are 
referred as hemispheres. Te mammalian brain consists of morphologically and 

(A) cerebral cortex basal ganglia (B) 

cerebral cortex 

thalamus 
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midbrain cerebellum hindbrain 
tegmentum 

brainstem pons cerebellum 
medulla pons 

dorsal 
cervical medulla 

cervical 
rostral 

ventral 
spinal
cord 

thoracic 
rostral 

spinal 
cord thoracic 

lumbar lumbar 

ventral 
dorsal sacral 

caudal 
sacral 

dorsal dorsal 
caudal ventral 

(C) dorsal 

sagittal 

lateral 
horizontal 

medialanterior posterior 
(rostral) (caudal) 

transverse 
(coronal, cross) 

ventral 

Figure 1–8 The organization of the mammalian central nervous 
system (CNS). (A) A sagittal (side) view of the human CNS. The  
basal ganglia (orange), thalamus (purple), hypothalamus (dark blue), 
hippocampus (light blue), and amygdala (red) from the left hemisphere 
are superimposed onto a midsagittal section of the CNS (tan 
background), the left half of which has been cut away to reveal right 
hemisphere structures (see Panel C for more explanation of the 
section plane). Major brain structures are indicated and will be  
studied in greater detail later in the book. From rostral to caudal, the 
brainstem is divided into midbrain, pons, and medulla. Spinal cord 
segments are divided into cervical, thoracic, lumbar, and sacral 
groups. Bottom left, illustration of the rostral–caudal neuraxis (CNS 
axis). At any given position along the neuraxis in a sagittal plane, the 
dorsal–ventral axis is perpendicular to the rostral–caudal axis. (B) A 
fatmap of the rat CNS reveals the internal divisions of major brain 
structures. The fatmap is a two-dimensional representation based on 

a developmental stage when progenitor cells of the nervous system 
are arranged as a two-dimensional sheet. It can be approximated by 
cutting the CNS along the midsagittal plane from the dorsal side and 
opening the cut surface using the ventral midline as the axis; the 
ventral-most structures are at the center and the dorsal-most 
structures are at the sides. (Imagine a book opened to display its 
pages; the spine of the book—the ventral midline—lays face down.) 
The left half of the fatmap indicates the major CNS divisions; the right 
side indicates major subdivisions. (C) Schematic illustration of the 
three principal section planes defned by the body axes. Transverse 
sections are perpendicular to the rostral–caudal axis, sagittal sections 
are perpendicular to the medial–lateral axis, and horizontal sections 
are perpendicular to the dorsal–ventral axis. (B, adapted from 
Swanson LW [2012] Brain Architecture. 2nd ed. Oxford University 
Press.) 



 

 

 

 
  

 

 

 

 

 

 

 

 
 

 

 7 How is the nervous system organized? 

functionally distinct structures, including the cerebral cortex, basal ganglia, 
hippocampus, amygdala, thalamus, hypothalamus, cerebellum, midbrain, 
pons, and medulla; the last three structures are collectively called the brainstem. 
Te brain can also be divided into forebrain, midbrain, and hindbrain, accord-
ing to the developmental origins of each region (Figure 7-3A). Te spinal cord 
consists of repeated structures called segments, which are divided into cervical, 
thoracic, lumbar, and sacral groups. Each segment gives of a pair of spinal nerves. 
Te PNS is made up of nerves (discrete bundles of axons) connecting the brain-
stem and spinal cord with the body and internal organs as well as isolated ganglia 
(clusters of cell bodies of nerve cells) outside the brain and spinal cord. We will 
study the organization and function of all of these neural structures in subsequent 
chapters. 

Te internal structure of the nervous system has traditionally been examined 
in histological sections. Tree types of sections are commonly used and are named 
following the conventions of histology. In transverse sections, also called cross or 
coronal sections, section planes are perpendicular to the long, anterior–poste-
rior axis of the animal (also termed the rostral–caudal axis, meaning snout to 
tail). In sagittal sections, section planes are perpendicular to the medial–lateral 
axis (midline to side) of the animal. In horizontal sections, section planes are 
perpendicular to the dorsal–ventral (back to belly) axis (Figure 1-8C). Note that 
in humans and other primates, which have a curved CNS, some of the anatomi-
cal terms may difer from these defnitions. For uniformity, the defnition of the 
rostral–caudal axis in this book always follows the neuraxis (axis of the CNS; bot-
tom left of Figure 1-8A) rather than the body axis. Transverse or coronal sections 
are perpendicular to the neuraxis while horizontal sections are in parallel with the 
neuraxis. Te neuraxis is defned by the curvature of the embryonic neural tube, 
from which the vertebrate nervous system derives, as we will learn in Chapter 7. 

1.4 The nervous system consists of neurons and glia 

Te nervous system is made up two major categories of cells: neurons (nerve 
cells) and glia. A typical neuron has two kinds of neuronal processes (cytoplas-
mic extensions): a long, thin process called the axon, which often extends far 
beyond the cell body (soma), and thick, bushy processes called dendrites, which 
are usually close to the soma (Figure 1-9A). At the ends of the axons are presyn-
aptic terminals, specialized structures that participate in the transfer of informa-
tion between neurons. Dendrites of many vertebrate neurons are decorated with 

Figure 1-9 Neurons and glia. 
(A) Schematic drawing of a typical neuron 
in the mammalian CNS. Dendrites are in 
blue; the axon is in red. The dashed break 
in the axon indicates that it can extend a 
long distance from the cell body. The 
brown structures surrounding the axon are 
myelin sheaths made by glia. The triangles 
at the ends of the axonal branches 
represent presynaptic terminals and the 
protrusions along the dendritic tree are 
dendritic spines. (B) Schematic drawing 
of glia in the CNS. Oligodendrocytes form 
myelin sheaths to wrap the axons of CNS 
neurons. (Schwann cells, not shown here, 
play a similar role in the PNS.) Astrocyte 
end feet wrap around connections between 
neurons (or synapses, which will be 
introduced later) in addition to blood 
vessels. Microglia are immune cells 
that engulf damaged cells and debris 
upon activation by injury and during 
developmental remodeling. (B, based on 
Allen NJ & Barres BA [2009] Nature 
457:675–677.) 
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Figure 1-10 The fr st image of cells. A 
drawing by Robert Hooke illustrates the 
repeating units visible in thin sections of 
cork under a primitive microscope. Hooke 
thought the units resembled small rooms 
and coined the term cells to describe 
them. (From Hooke R [1665] Micrographia. 
J. Martyn and J. Allestry.) 

small protrusions called dendritic spines, which likewise function in intercellu-
lar information transfer. Over the course of this book, we will encounter many 
neuronal types with distinct morphologies. Most of them have well-diferentiated 
axons and dendrites serving distinct functions, as will be discussed in Section 1.7. 

Tere are four major types of glia in vertebrate nervous systems: oligoden-
drocytes, Schwann cells, astrocytes, and microglia (Figure 1-9B). Oligodendro-
cytes and Schwann cells play analogous functions in the CNS and PNS, respectively: 
they wrap axons with their cytoplasmic extensions, called myelin sheath, which 
increases the speed at which information propagates along axons. Oligodendro-
cytes and myelinated axons constitute white matter in the CNS because myelin 
is rich in lipids and thus appears white. Astrocytes play many roles in neural 
development and regulation of neuronal communication; they are present in 
the gray matter of the CNS, which is enriched in neuronal cell bodies, dendrites, 
axon terminals, and connections between neurons. Microglia are the resident 
immune cells of the nervous system: they engulf damaged cells and debris and 
help reorganize neuronal connections during development and in response to 
experience. Invertebrate nervous systems have a similar division of labor for dif-
ferent glial types. 

1.5 Individual neurons were frst visualized by the Golgi stain 
in the late nineteenth century 

Contemporary students of neurobiology may be surprised to learn that the cel-
lular organization of the nervous system was not uniformly accepted at the 
beginning of the twentieth century, well after biologists in other felds had 
embraced the cell as the fundamental unit of life. Robert Hooke frst used the 
term cell in 1665 to describe the repeating units he observed in thin slices of cork 
(Figure 1-10) when using a newly invented piece of equipment—the micro-
scope. Scientists subsequently used microscopes to observe many biological 
samples and found cells to be ubiquitous structures. In 1839, Matthias Schleiden 
and Teodor Schwann formally proposed the cell theory: all living organisms 
are composed of cells as their basic units. Te cell theory was widely accepted in 
almost every discipline of biology by the second half of the nineteenth century, 
except among researchers studying the nervous system. Although cell bodies 
had been observed in nervous tissues, many histologists of that era believed that 
nerve cells were linked together by their elaborate processes to form a giant net, 
or reticulum, of nerves. Proponents of this reticular theory believed that the 
reticulum as a whole, rather than its individual cells, constituted the unit of the 
nervous system. 

Among the histologists who supported the reticular theory of the nervous sys-
tem was Camillo Golgi, who made many important contributions to science, 
including the discovery of the Golgi apparatus, an intracellular organelle respon-
sible for processing proteins in the secretory pathway (Figure 2-1). Golgi’s greatest 
contribution, however, was the invention of the Golgi stain. When a piece of neu-
ral tissue is soaked in a solution of silver nitrate and potassium dichromate in the 
dark for several weeks, black precipitates (microcrystals of silver chromate) sto-
chastically form in a small fraction of nerve cells, rendering these cells visible 
against an unstained background. Importantly, once black precipitates form within 
a cell, an autocatalytic reaction occurs such that the entire cell, including most or 
all of the elaborate extensions, can be visualized in its native tissue (Figure 1-11). 
Golgi stain thus enabled visualization of the entire morphology of individual neu-
rons for the frst time. Despite inventing this key method for neuronal visualiza-
tion, however, Golgi remained a believer in the reticular theory (Box 1-1). 

It took another great histologist, Santiago Ramón y Cajal, to efectively refute 
the reticular theory. Te work of Ramón y Cajal and several contemporaries 
instead supported the neuron doctrine, which postulated that neuronal pro-
cesses do not fuse to form a continuous reticulum. Instead, neurons intimately 
contact each other, with communication between distinct neurons occurring 
at these contact sites (Box 1-1). Te term synapse was later coined by Charles 
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* 

2 µm 

dendritic spine 

50 µm 

Figure 1-11 Golgi stain. An individual 
Purkinje cell in the mouse cerebellum is 
stained black by the formation of silver 
chromate precipitate, allowing visualization 
of its complex dendritic tree. The axon, 
which is not included in this image, 
projects downward from the cell body 
indicated by an asterisk. The inset shows 
a higher magnifcation of a dendritic 
segment, highlighting protruding structures 
called dendritic spines. (Adapted from 
Luo L, Hensch TK, Ackerman L, et al. 
[1996] Nature 379:837–840. With 
permission from Springer Nature.) 

Sherrington to describe these sites, at which signals fow from one neuron to 
another. After systematically applying the Golgi stain to study tissues in many 
parts of the nervous systems of many organisms, ranging from insects to humans, 
and at many developmental stages, Ramón y Cajal concluded that individual neu-
rons are embryologically, structurally, and functionally independent units of the 
nervous system. 

Box 1-1: The debate between Ramón y Cajal and Golgi: why do scientists make mistakes? 

Camillo Golgi and Santiago Ramón y Cajal were the most 
infuential neurobiologists of their time. Tey shared the 
1906 Nobel Prize for Physiology or Medicine, the frst to be 
awarded for fndings in the nervous system. However, their 
debates on how nerve cells constitute the nervous system— 
via a reticular network or as individual neurons communi-
cating with each other through synaptic contacts—continued 
during their Nobel lectures (Figure 1-12A,B). We now know 
that Ramón y Cajal’s view was correct and Golgi’s view was 
largely incorrect. For example, utilizing the brainbow method 
(Section 14.18), individual neurons, their dendritic trees, 
and even their axon terminals can be visualized in and dis-
tinguished by distinct colors (Figure 1-12C). Interestingly, 
Ramón y Cajal used the Golgi stain to refute Golgi’s theory. 
Why didn’t Golgi reach the correct conclusion using his own 
method? Was he not a careful observer? After all, he made 
many great discoveries, including those describing the Golgi 

apparatus. According to Ramón y Cajal’s analysis, “Golgi 
arrived at this conclusion by an unusual blend of accurate 
observations and preconceived ideas. . . . Golgi’s work actu-
ally consists of two separate parts. On the one hand, there is 
his method, which has generated a prodigious number of 
observations that have been enthusiastically confrmed. But 
on the other, there are his interpretations, which have been 
questioned and rejected.” 

Before the invention of the Golgi stain, histologists could 
not resolve processes of individual nerve cells and therefore 
believed that nerve processes were fused together in a giant 
net. Golgi was trained in a scientifc environment in which 
this reticular theory was the dominant interpretation of ner-
vous system organization and so tried to ft his observations 
into existing theory. For example, even though Golgi was the 
frst to discover, using his staining method, that dendritic 

(Continued) 
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Box 1-1: continued 

(A) (B) (C) 

10 µm 

dendrites 

cell bodies 

axons 

Figure 1-12 Three different views of hippocampal granule cells. 
(A) Golgi’s drawing of granule cells of the hippocampus. The 
dendritic, cell body, and axonal layers are indicated on the left. 
In Golgi’s drawing, all axons are fused together to form a giant 
reticulum. (B) Ramón y Cajal’s depiction of the same hippocampal 
granule cells. Note that axons below the cell bodies have defnitive 
endings. (C) Hippocampal granule cells labeled by the brainbow 
technique, which allows the spectral separation of individual 

trees have free endings (Figure 1-12A, top), he thought that 
dendrites were used to collect nutrients for nerve cells. He 
believed that it was their axons, which formed an insepara-
ble giant net as he viewed them (Figure 1-12A, bottom), that 

neurons expressing different mixtures of cyan, yellow, and red 
fuorescent proteins. Not only cell bodies but also some dendrites 
above and axon terminals below can be resolved by different colors. 
(A, after Golgi C [1906] Nobel Lecture. B, after Ramón y Cajal S 
[1911] Histology of the Nervous System of Man and Vertebrates. 
Oxford University Press. C, after Livet J, Weissman TA, Kang H, 
et al. [2007] Nature 450:56–62. With permission from Springer 
Nature.) 

performed all the special functions of the nervous system. 
Tis story teaches an important lesson: scientists need to be 
observant, but they also need to be as objective and unbiased 
as possible when interpreting their own observations. 

1.6 Twentieth-century technology confrmed the neuron doctrine 

Ramón y Cajal could not convince Golgi to abandon the reticular theory, but 
many lines of evidence since the Golgi–Ramón y Cajal debate (Box 1-1) have pro-
vided strong support for the neuron doctrine. For example, during development, 
neurons begin with only cell bodies. Axons then grow out from the cell bodies 
toward their fnal destinations. Tis was demonstrated by observing axon growth 
in vitro via experiments made possible by tissue culture techniques, which were 
initially developed for the purpose of visualizing neuronal process growth (Fig-
ure 1-13). Axons are led by a structure called the growth cone, which changes its 
shape dynamically as axons extend. We will learn more about the function of the 
growth cone in axon guidance in Chapter 5. 

Te fnal pieces of evidence that neuronal processes are not fused with each 
other came from observations made possible by the development of electron 
microscopy, a technique allowing visualization of structures at nanometer (nm) 
resolution. (Conventional light microscopy, which scientists since Hooke have 
used to observe biological samples, cannot resolve structures less than 200 nm 
apart because of the physical properties of light.) Te use of electron microscopy 
to examine chemical synapses (so named because communication between 
cells is mediated by release of chemicals called neurotransmitters) revealed that 
the synaptic cleft, a 20–100 nm gap, separates a neuron from its target, which can 
be another neuron or a muscle cell (Figure 1-14A). Synaptic partners are not sym-
metric: presynaptic terminals of neurons contain small synaptic vesicles flled 
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with neurotransmitters, which, upon stimulation, fuse with the plasma mem-
brane and release neurotransmitters into the synaptic cleft. Postsynaptic target cells 
have postsynaptic specializations (also called postsynaptic densities) enriched 
in neurotransmitter receptors on their plasma membrane surfaces. Chemical 
synapses are the predominant type of synapse allowing neurons to communi-
cate with each other and with muscle cells. We will study them in greater detail 
in Chapter 3. 

Neurons can also communicate with each other by electrical synapses medi-
ated by gap junctions (Figure 1-14B). Here, each partner neuron contributes pro-
tein subunits to form gap junction channels that directly link the cytoplasms of 
two adjacent neurons, allowing ions and small molecules to travel between them. 
Tese gap junctions come closest to what the reticular theory would imagine as a 
fusion between diferent neurons. However, macromolecules cannot pass between 
gap junctions, and the neurons remain distinct cells with highly regulated com-
munication. Te existence of gap junctions, therefore, does not violate the premise 
that individual neurons are the building blocks of the nervous system. 

1.7 In vertebrate neurons, information generally fows from 
dendrites to cell bodies to axons 

As introduced in Section 1.4, neurons have two kinds of processes: dendrites and 
axons. Te dendritic morphologies and axonal projection patterns of specifc 
types of neurons are characteristic and are often used for classifcation. For exam-
ple, the most frequently encountered type of neuron in the mammalian cerebral 
cortex and hippocampus, the pyramidal neuron, has a pyramid-shaped cell body 
with an apical dendrite and several basal dendrites that branch extensively (Fig-
ure 1-15A). Much of the dendritic tree sprouts dendritic spines (Figure 1-11 inset), 
which contain postsynaptic specializations in close contact with presynaptic ter-
minals of partner neurons. Another widely encountered neuronal type, basket 
cells (Figure 1-15B), wrap their axon terminals around the cell bodies of pyrami-
dal cells in the cerebral cortex or Purkinje cells (Figure 1-11) in the cerebellum. 

Figure 1-13 The fr st time-lapse depiction 
of a growing axon. Frog embryonic spinal 
cord tissue was cultured in vitro. Growth 
of an individual axon was sketched with 
the aid of a camera lucida at the time 
indicated on the left (hour.minute). The 
stationary blood vessel (oval) provided 
a landmark for the growing tips of the 
axon, called growth cones, which undergo 
dynamic changes in shape, including both 
extensions and retractions. A distance 
scale is at the bottom of the fgure. 
(From Harrison RG [1910] J Exp Zool 
9:787–846.) 

(A) presynaptic terminal (B) 

synaptic cleft 

* 
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* 

postsynaptic specialization 
200 nm 200 nm 

Figure 1-14 Chemical and electrical synapses. (A) Electron micrograph of a chemical synapse 
between the presynaptic terminal of a motor neuron and the postsynaptic specialization of its 
target muscle cell. A synaptic cleft separates the two cells. The arrow points to a synaptic 
vesicle. (B) Electron micrograph of an electrical synapse (gap junction) between two dendrites of 
mouse cerebral cortical neurons. Two opposing pairs of arrows mark the border of the electrical 
synapse. Asterisks indicate mitochondria in both micrographs. (A, courtesy of Jack McMahan. 
B, courtesy of Josef Spacek & Kristen M. Harris, SynapseWeb.) 
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Figure 1-15 Morphological diversity of neurons. (A) A pyramidal to indicate the long distance) with terminal endings in the skin 
cell from rabbit cerebral cortex. A typical pyramidal cell has an apical (equivalent of dendrites for collecting sensory information) and a 
dendrite (blue) that gives off branches as it ascends, several basal central axon that projects into the spinal cord. (E) A motor neuron 
dendrites (blue) that emerge from the cell body, and an axon (red) from the fruit fy ventral nerve cord (equivalent to the vertebrate spinal 
that branches locally and projects to distant targets. (B) A basket cell cord). Most invertebrate central neurons are unipolar: a single process 
from mouse cerebellum. The basket cell axon (red) forms a series of extends out of the cell body, giving rise to dendritic branches (blue) 
“basket” terminals that wrap around Purkinje cell bodies (not drawn). and an axon (red). In all panels, asterisks denote axon initiation 
(C) A motor neuron from cat spinal cord. Its bushy dendrites (blue) segments; as will be discussed in Section 1.8, action potentials are 
receive input within the spinal cord, and its axon (red) projects outside usually initiated at these sites. (A–D, adapted from Ramón y Cajal S 
the spinal cord to muscle, while also leaving behind local branches. [1911] Histology of the Nervous System of Man and Vertebrates. 
(D) A mammalian sensory neuron from a dorsal root ganglion. A single Oxford University Press. E, based on Lee T & Luo L [1999] Neuron 
process from the cell body bifurcates into a peripheral axon (dashed 22:451–461.) 

Te spinal cord motor neuron extends bushy dendrites within the spinal cord 
(Figure 1-15C) and projects its axon out of the spinal cord and into muscle. 
Located in the dorsal root ganglion just outside the spinal cord, a sensory neu-
ron of the somatosensory system (which processes bodily sensation) extends a 
single process that bifurcates, forming a peripheral axon that gives rise to branched 
terminal endings and a central axon that projects into the spinal cord (Figure 1-15D). 
Most vertebrate neurons have both dendrites and an axon leaving the cell body, 
and hence are called multipolar (or bipolar if there is only a single dendrite); 
somatosensory neurons are pseudounipolar because, although there is just one 
process leaving the cell body, it gives rise to both peripheral and central branches. 

What is the direction of information fow within individual neurons? After 
systematically observing diferent types of neurons in various parts of the ner-
vous system, Ramón y Cajal proposed the theory of dynamic polarization: trans-
mission of neuronal signals proceeds from dendrites and cell bodies to axons. 
Terefore, every neuron has (1) a receptive component, the cell body and den-
drites; (2) a transmission component, the axon; and (3) an efector component, 
the axon terminals. With few exceptions (the somatosensory neuron being one), 
this important principle has been validated by numerous observations and exper-
iments since it was proposed a century ago and has been used extensively to 
deduce the direction of information fow in the vertebrate CNS. We will study the 
cell biological basis of neuronal polarization in Chapter 2. 

How did observing the morphologies of individual neurons lead to the discov-
ery of this rule? Ramón y Cajal took advantage of the fact that, in sensory systems, 
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information must generally fow from sensory organs to the brain. By examining 
diferent neurons along the visual pathway (Figure 1-16), for example, one can 
see that at each connection, dendrites are at the receiving end, facing the external 
world, while axons are oriented so as to deliver such information to more central 
targets, sometimes at a great distance from the cell body where the axon origi-
nates. Tis applies to neurons in other sensory systems as well. Conversely, in 
motor systems, information must generally fow from the CNS to the periphery. 
Te morphology of the motor neuron indeed supports the notion that its bushy 
dendrites receive input within the spinal cord, and its long axon, projecting to 
muscle, provides output (Figure 1-15C). 

Neuronal processes in invertebrates can also be defned as dendrites and 
axons according to their functions, with dendrites positioned to receive informa-
tion and axons to send it. However, the morphological diferentiation of most 
invertebrate axons and dendrites, especially in the CNS, is not as clear-cut as it is 
for vertebrate neurons. Most often, invertebrate neurons are unipolar, extending 
a single process giving rise to both dendritic and axonal branches (Figure 1-15E). 
Dendritic branches are often, but not always, closer to the cell body. In many 
cases, the same branches can both receive and send information; this occurs in 
some vertebrate neurons as well, as we will learn in Chapters 4 and 6. Tus, in the 
“simpler” invertebrate nervous systems, it is more difcult to deduce the direction 
of information fow by examining the morphology of individual neurons. 

1.8 Neurons use changes in membrane potential and 
neurotransmitter release to transmit information 

What is the physical basis of information fow within neurons? We now know that 
the nervous system uses electrical signals to propagate information. Te frst evi-
dence of this came from Luigi Galvani’s discovery, in the late eighteenth century, 
that application of an electric current could generate muscle twitches in frogs. It 
was known by the beginning of the twentieth century that electrical signals were 
spread in neurons via transient changes in membrane potential, the electrical 
potential diference across the neuronal membrane. As we will learn in more 
detail in Chapter 2, neurons at the resting state are more negatively charged inside 
the cells compared to outside the cells. When neurons are excited, their mem-
brane potentials change transiently, creating nerve impulses that propagate along 
their axons. But how is information relayed through nerve impulses? Quantitative 
studies of how sensory stimuli of diferent magnitudes induce nerve impulses 
provided important clues. 

Studies of muscle contraction in response to electrical stimulation of motor 
nerves suggested that an elementary nerve impulse underlies diferent stimulus 
strengths. An all-or-none conduction principle became evident when amplifers 
for electrical signals built in the 1920s made it possible to record nerve impulses 
from single axon fbers in response to sensory stimulation. Edgar Adrian and 
co-workers systematically measured nerve impulses from somatosensory neu-
rons (Figure 1-15D) that convey information about touch, pressure, and pain to 
the spinal cord. Tey found that individual nerve impulses were of a uniform size 
and shape, whether they were elicited by weak or strong sensory stimuli; stronger 
stimuli increased the frequency of such impulses but not the properties of each 
impulse (Figure 1-17). 

Tese experiments led to two important concepts in modern neuroscience. 
Te frst concept is the presence of an elementary unit of nerve impulses that 
axons use to convey information across long distances; we now call this elemen-
tary unit an action potential. In Chapter 2, we will study in greater detail the 
molecular basis of action potentials, including why they exhibit the all-or-none 
property. Te second concept is that neurons use the frequency of action poten-
tials to convey the intensity of signals. Whereas the frequency of action potentials 
is the most widely used means to convey signal intensity throughout the nervous 
system, the timing of action potentials can also convey important information. 

In addition to action potentials, another important form of communication 
within neurons are graded potentials—membrane potentials that vary continuously 

photoreceptor cells 

bipolar cell 

retinal ganglion cell 

Figure 1–16 Neurons and information 
fow in the ver tebrate retina. Visual 
information is collected by photoreceptor 
cells in the retina, communicated to the 
bipolar cell, and then to the retinal 
ganglion cell, which projects a long-
distance axon into the brain. Note that 
for both the bipolar cell and the retinal 
ganglion cell, information is received by 
their dendrites (blue) and sent via their 
axons (red). The photoreceptor processes 
can also be divided into a dendrite 
equivalent that detects light (blue) and an 
axon that sends output to the bipolar cell. 
Arrows indicate the direction of information 
fow. We will learn more about these cells 
and connections in Chapter 4. (Adapted 
from Ramón y Cajal S [1911] Histology 
of the Nervous System of Man and 
Vertebrates. Oxford University Press.) 




