

Python Tricks: The Book

Dan Bader

For online information and ordering of this and other books by Dan
Bader, please visit dbader.org. For more information, please contact
Dan Bader at mail@dbader.org.

Copyright © Dan Bader (dbader.org), 2016–2017

ISBN: 9781775093305 (paperback)

ISBN: 9781775093312 (electronic)

Cover design by Anja Pircher Design (anjapircher.com)

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Dan Bader with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for your
personal enjoyment only. This ebookmaynot be re-sold or given away
to other people. If you would like to share this book with another per-
son, please purchase an additional copy for each recipient. If you’re
reading this book and did not purchase it, or it was not purchased
for your use only, then please return to dbader.org/pytricks-book and
purchase your own copy. Thank you for respecting the hard work be-
hind this book.

Updated 2017-10-27 I would like to thankMichaelHowitz, Johnathan
Willitts, Julian Orbach, Johnny Giorgis, Bob White, Daniel Meyer,
Michael Stueben, Smital Desai, Andreas Kreisig, David Perkins, Jay
Prakash Singh, and Ben Felder for their excellent feedback.

https://dbader.org/
https://dbader.org/
http://anjapircher.com
https://dbader.org/pytricks-book

What Pythonistas Say About Python Tricks: The Book

”I love love love the book. It’s like having a seasoned tutor explaining,
well, tricks! I’m learning Python on the job and I’m coming from pow-
ershell, which I learned on the job—so lots of new, great stuff. When-
ever I get stuck in Python (usuallywith flask blueprints or I feel likemy
code could be more Pythonic) I post questions in our internal Python
chat room.

I’m often amazed at some of the answers coworkers giveme. Dict com-
prehensions, lambdas, and generators often pepper their feedback. I
am always impressed and yet flabbergasted at how powerful Python
is when you know these tricks and can implement them correctly.

Your bookwas exactlywhat Iwanted to help getme fromabewildered
powershell scripter to someonewho knows how andwhen to use these
Pythonic ‘tricks’ everyone has been talking about.

As someone who doesn’t have my degree in CS it’s nice to have the text
to explain things that others might have learned when they were clas-
sically educated. I am really enjoying the book and am subscribed to
the emails as well, which is how I found out about the book.”

—Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

”I first heard about your book from a co-worker who wanted to
trick me with your example of how dictionaries are built. I was
almost 100% sure about the reason why the end product was a much
smaller/simpler dictionary but I must confess that I did not expect
the outcome :)

He showed me the book via video conferencing and I sort of skimmed
through it as he flipped the pages for me, and I was immediately curi-
ous to read more.

That same afternoon I purchasedmy own copy and proceeded to read
your explanation for the way dictionaries are created in Python and
later that day, as Imet a different co-worker for coffee, I used the same
trick on him :)

He then sprung a different question on the same principle, and be-
cause of the way you explained things in your book, I was able tonot*
guess the result but correctly answerwhat the outcomewould be. That
means that you did a great job at explaining things :)*

I am not new in Python and some of the concepts in some of the chap-
ters are not new to me, but I must say that I do get something out of
every chapter so far, so kudos for writing a very nice book and for do-
ing a fantastic job at explaining concepts behind the tricks! I’m very
much looking forward to the updates and Iwill certainly letmy friends
and co-workers know about your book.”

—OgMaciel, Python Developer at Red Hat

”I really enjoyed reading Dan’s book. He explains important Python
aspects with clear examples (using two twin cats to explain ‘is‘ vs ‘==‘
for example).

It is not just code samples, it discusses relevant implementation details
comprehensibly. What really matters though is that this book makes
you write better Python code!

The book is actually responsible for recent new good Python habits I
picked up, for example: using custom exceptions and ABC’s (I found
Dan’s blog searching for abstract classes.) These new learnings alone
are worth the price.”

— Bob Belderbos, Engineer at Oracle & Co-Founder of PyBites

Contents

Contents 6

Foreword 9

1 Introduction 11
1.1 What’s a Python Trick? 11
1.2 What This Book Will Do for You 13
1.3 How to Read This Book 14

2 Patterns for Cleaner Python 15
2.1 Covering Your A** With Assertions 16
2.2 Complacent Comma Placement 25
2.3 Context Managers and the with Statement 29
2.4 Underscores, Dunders, and More 36
2.5 A Shocking Truth About String Formatting 48
2.6 “The Zen of Python” Easter Egg 56

3 Effective Functions 57
3.1 Python’s Functions Are First-Class 58
3.2 Lambdas Are Single-Expression Functions 68
3.3 The Power of Decorators 73
3.4 Fun With *args and **kwargs 86
3.5 Function Argument Unpacking 91
3.6 Nothing to Return Here 94

6

Contents

4 Classes & OOP 97
4.1 Object Comparisons: “is” vs “==” 98
4.2 String Conversion (Every Class Needs a __repr__) . 101
4.3 Defining Your Own Exception Classes 111
4.4 Cloning Objects for Fun and Profit 116
4.5 Abstract Base Classes Keep Inheritance in Check . . . 124
4.6 What Namedtuples Are Good For 128
4.7 Class vs Instance Variable Pitfalls 136
4.8 Instance, Class, and Static Methods Demystified . . . 143

5 Common Data Structures in Python 153
5.1 Dictionaries, Maps, and Hashtables 156
5.2 Array Data Structures 163
5.3 Records, Structs, and Data Transfer Objects 173
5.4 Sets and Multisets 185
5.5 Stacks (LIFOs) . 189
5.6 Queues (FIFOs) . 195
5.7 Priority Queues . 201

6 Looping & Iteration 205
6.1 Writing Pythonic Loops 206
6.2 Comprehending Comprehensions 210
6.3 List Slicing Tricks and the Sushi Operator 214
6.4 Beautiful Iterators 218
6.5 Generators Are Simplified Iterators 231
6.6 Generator Expressions 239
6.7 Iterator Chains . 246

7 Dictionary Tricks 250
7.1 Dictionary Default Values 251
7.2 Sorting Dictionaries for Fun and Profit 255
7.3 Emulating Switch/Case Statements With Dicts 259
7.4 The Craziest Dict Expression in the West 264
7.5 So Many Ways to Merge Dictionaries 271
7.6 Dictionary Pretty-Printing 274

7

Contents

8 Pythonic Productivity Techniques 277
8.1 Exploring Python Modules and Objects 278
8.2 Isolating Project Dependencies With Virtualenv . . . 282
8.3 Peeking Behind the Bytecode Curtain 288

9 Closing Thoughts 293
9.1 Free Weekly Tips for Python Developers 295
9.2 PythonistaCafe: A Community for Python Developers 296

8

Foreword

It’s been almost ten years since I first got acquainted with Python as a
programming language. When I first learned Python many years ago,
it was with a little reluctance. I had been programming in a different
language before, and all of the sudden at work, I was assigned to a
different team where everyone used Python. That was the beginning
of my own Python journey.

When I was first introduced to Python, I was told that it was going to
be easy, that I should be able to pick it up quickly. When I asked my
colleagues for resources for learning Python, all they gave me was a
link to Python’s official documentation. Reading the documentation
was confusing at first, and it really took me a while before I even felt
comfortable navigating through it. Often I found myself needing to
look for answers in StackOverflow.

Coming from a different programming language, I wasn’t looking for
just any resource for learning how to program or what classes and
objects are. I was looking for specific resources that would teach me
the features of Python, what sets it apart, and how writing in Python
is different than writing code in another language.

It really has takenmemany years to fully appreciate this language. As
I read Dan’s book, I kept thinking that I wished I had access to a book
like this when I started learning Python many years ago.

For example, one of the many unique Python features that surprised
me at first were list comprehensions. As Dan mentions in the book,

9

Contents

a tell of someone who just came to Python from a different language
is the way they use for-loops. I recall one of the earliest code review
comments I got when I started programming in Python was, “Why
not use list comprehension here?” Dan explains this concept clearly
in section 6, starting by showing how to loop the Pythonic way and
building it all the way up to iterators and generators.

In chapter 2.5, Dan discusses the different ways to do string format-
ting in Python. String formatting is one of those things that defy the
Zen of Python, that there should only be one obvious way to do things.
Dan shows us the different ways, including my favorite new addition
to the language, the f-strings, and he also explains the pros and cons
of each method.

The Pythonic Productivity Techniques section is another great re-
source. It covers aspects beyond the Python programming language,
and also includes tips on how to debug your programs, how tomanage
the dependencies, and gives you a peek inside Python bytecode.

It truly is an honor and my pleasure to introduce this book, Python
Tricks, by my friend, Dan Bader.

By contributing to Python as a CPython core developer, I get con-
nected to many members of the community. In my journey, I found
mentors, allies, and made many new friends. They remind me that
Python is not just about the code, Python is a community.

Mastering Python programming isn’t just about grasping the theoreti-
cal aspects of the language. It’s just asmuch about understanding and
adopting the conventions and best practices used by its community.

Dan’s book will help you on this journey. I’m convinced that you’ll be
more confident when writing Python programs after reading it.

—Mariatta Wijaya, Python Core Developer (mariatta.ca)

10

http://mariatta.ca/

Chapter 1

Introduction

1.1 What’s a Python Trick?
Python Trick: A short Python code snippet meant as a
teaching tool. A Python Trick either teaches an aspect of
Python with a simple illustration, or it serves as a moti-
vating example, enabling you to dig deeper and develop
an intuitive understanding.

Python Tricks started out as a short series of code screenshots that I
shared on Twitter for a week. To my surprise, they got rave responses
and were shared and retweeted for days on end.

More and more developers started asking me for a way to “get the
whole series.” Actually, I only had a few of these tricks lined up, span-
ning a variety of Python-related topics. There wasn’t a master plan
behind them. They were just a fun little Twitter experiment.

But from these inquiries I got the sense that my short-and-sweet code
exampleswould beworth exploring as a teaching tool. Eventually I set
out to create a few more Python Tricks and shared them in an email
series. Within a few days, several hundred Python developers had
signed up and I was just blown away by that response.

11

1.1. What’s a Python Trick?

Over the following days and weeks, a steady stream of Python devel-
opers reached out to me. They thanked me for making a part of the
language they were struggling to understand click for them. Hearing
this feedback felt awesome. I thought these Python Tricks were just
code screenshots, but so many developers were getting a lot of value
out of them.

That’s when I decided to double down on my Python Tricks experi-
ment and expanded it into a series of around 30 emails. Each of these
was still just a a headline and a code screenshot, and I soon realized
the limits of that format. Around this time, a blind Python developer
emailed me, disappointed to find that these Python Tricks were deliv-
ered as images he couldn’t read with his screen reader.

Clearly, I needed to invest more time into this project to make it
more appealing and more accessible to a wider audience. So, I sat
down to re-create the whole series of Python Tricks emails in plain
text and with proper HTML-based syntax highlighting. That new
iteration of Python Tricks chugged along nicely for a while. Based on
the responses I got, developers seemed happy they could finally copy
and paste the code samples in order to play around with them.

As more and more developers signed up for the email series, I started
noticing a pattern in the replies and questions I received. Some Tricks
worked well as motivational examples by themselves. However, for
the more complex ones there was no narrator to guide readers or to
give them additional resources to develop a deeper understanding.

Let’s just say this was another big area of improvement. My mission
statement for dbader.org is to help Python developers become more
awesome—and this was clearly an opportunity to get closer to that
goal.

I decided to take the best and most valuable Python Tricks from the
email course, and I started writing a new kind of Python book around
them:

12

https://dbader.org/

1.2. What This Book Will Do for You

• A book that teaches the coolest aspects of the language with
short and easy-to-digest examples.

• A book that works like a buffet of awesome Python features
(yum!) and keeps motivation levels high.

• A book that takes you by the hand to guide you and help you
deepen your understanding of Python.

This book is really a labor of love for me and also a huge experiment. I
hope you’ll enjoy reading it and learn something about Python in the
process!

— Dan Bader

1.2 What This BookWill Do for You
My goal for this book is to make you a better—more effective, more
knowledgeable, more practical—Python developer. You might be
wondering, How will reading this book help me achieve all that?

Python Tricks is not a step-by-step Python tutorial. It is not an
entry-level Python course. If you’re in the beginning stages of learn-
ing Python, the book alone won’t transform you into a professional
Python developer. Reading it will still be beneficial to you, but you
need to make sure you’re working with some other resources to build
up your foundational Python skills.

You’ll get the most out of this book if you already have some knowl-
edge of Python, and youwant to get to the next level. It will work great
for you if you’ve been coding Python for a while and you’re ready to
go deeper, to round out your knowledge, and to make your code more
Pythonic.

Reading Python Tricks will also be great for you if you already have
experience with other programming languages and you’re looking to
get up to speed with Python. You’ll discover a ton of practical tips and
design patterns that’ll make you a more effective and skilled Python
coder.

13

1.3. How to Read This Book

1.3 How to Read This Book
The best way to read Python Tricks: The Book is to treat it like a buffet
of awesome Python features. Each Python Trick in the book is self-
contained, so it’s completely okay to jump straight to the ones that
look the most interesting. In fact, I would encourage you to do just
that.

Of course, you can also read through all the Python Tricks in the order
they’re laid out in the book. That way you won’t miss any of them, and
you’ll know you’ve seen it all when you arrive at the final page.

Some of these tricks will be easy to understand right away, and you’ll
have no trouble incorporating them into your day to day work just by
reading the chapter. Other tricks might require a bit more time to
crack.

If you’re having trouble making a particular trick work in your own
programs, it helps to play through each of the code examples in a
Python interpreter session.

If that doesn’t make things click, then please feel free to reach out to
me, so I can help you out and improve the explanation in this book.
In the long run, that benefits not just you but all Pythonistas reading
this book.

14

Chapter 2

Patterns for Cleaner Python

15

2.1. Covering Your A** With Assertions

2.1 Covering Your A** With Assertions
Sometimes a genuinely helpful language feature gets less attention
than it deserves. For some reason, this is what happened to Python’s
built-in assert statement.

In this chapter I’m going to give you an introduction to using asser-
tions in Python. You’ll learn how to use them to help automatically
detect errors in your Python programs. This will make your programs
more reliable and easier to debug.

At this point, you might be wondering “What are assertions and what
are they good for?” Let’s get you some answers for that.

At its core, Python’s assert statement is a debugging aid that tests a
condition. If the assert condition is true, nothing happens, and your
program continues to execute as normal. But if the condition evalu-
ates to false, an AssertionError exception is raised with an optional
error message.

Assert in Python — An Example
Here’s a simple example so you can see where assertions might come
in handy. I tried to give this some semblance of a real-world problem
you might actually encounter in one of your programs.

Suppose you were building an online store with Python. You’re work-
ing to add a discount coupon functionality to the system, and eventu-
ally you write the following apply_discount function:

def apply_discount(product, discount):

price = int(product['price'] * (1.0 - discount))

assert 0 <= price <= product['price']

return price

Notice the assert statement in there? It will guarantee that, no mat-
terwhat, discounted prices calculated by this function cannot be lower

16

2.1. Covering Your A** With Assertions

than $0 and they cannot be higher than the original price of the prod-
uct.

Let’s make sure this actually works as intended if we call this function
to apply a valid discount. In this example, products for our store will
be represented as plain dictionaries. This is probably not what you’d
do for a real application, but it’ll work nicely for demonstrating asser-
tions. Let’s create an example product—a pair of nice shoes at a price
of $149.00:

>>> shoes = {'name': 'Fancy Shoes', 'price': 14900}

By the way, did you notice how I avoided currency rounding issues
by using an integer to represent the price amount in cents? That’s
generally a good idea… But I digress. Now, if we apply a 25% discount
to these shoes, we would expect to arrive at a sale price of $111.75:

>>> apply_discount(shoes, 0.25)

11175

Alright, this worked nicely. Now, let’s try to apply some invalid dis-
counts. For example, a 200% “discount” that would lead to us giving
money to the customer:

>>> apply_discount(shoes, 2.0)

Traceback (most recent call last):

File "<input>", line 1, in <module>
apply_discount(prod, 2.0)

File "<input>", line 4, in apply_discount

assert 0 <= price <= product['price']

AssertionError

As you can see, when we try to apply this invalid discount, our
program halts with an AssertionError. This happens because a
discount of 200% violated the assertion condition we placed in the
apply_discount function.

17

2.1. Covering Your A** With Assertions

You can also see how the exception stacktrace points out the exact line
of code containing the failed assertion. If you (or another developer
on your team) ever encounter one of these errors while testing the
online store, it will be easy to find out what happened just by looking
at the exception traceback.

This speeds up debugging efforts considerably, and it will make your
programs more maintainable in the long-run. And that, my friend, is
the power of assertions.

Why Not Just Use a Regular Exception?
Now, you’re probably wondering why I didn’t just use an if-statement
and an exception in the previous example…

You see, the proper use of assertions is to inform developers about
unrecoverable errors in a program. Assertions are not intended to
signal expected error conditions, like a File-Not-Found error, where
a user can take corrective actions or just try again.

Assertions aremeant to be internal self-checks for your program. They
work by declaring some conditions as impossible in your code. If one
of these conditions doesn’t hold, that means there’s a bug in the pro-
gram.

If your program is bug-free, these conditions will never occur. But if
they do occur, the program will crash with an assertion error telling
you exactly which “impossible” condition was triggered. This makes
it much easier to track down and fix bugs in your programs. And I like
anything that makes life easier—don’t you?

For now, keep in mind that Python’s assert statement is a debugging
aid, not a mechanism for handling run-time errors. The goal of using
assertions is to let developers find the likely root cause of a bug more
quickly. An assertion error should never be raised unless there’s a bug
in your program.

Let’s take a closer look at some other things we can do with assertions,

18

2.1. Covering Your A** With Assertions

and then I’ll cover two commonpitfalls when using them in real-world
scenarios.

Python’s Assert Syntax
It’s always a good idea to study up on how a language feature is ac-
tually implemented in Python before you start using it. So let’s take
a quick look at the syntax for the assert statement, according to the
Python docs:1

assert_stmt ::= "assert" expression1 ["," expression2]

In this case, expression1 is the condition we test, and the optional
expression2 is an errormessage that’s displayed if the assertion fails.
At execution time, the Python interpreter transforms each assert state-
ment into roughly the following sequence of statements:

if __debug__:

if not expression1:

raise AssertionError(expression2)

Two interesting things about this code snippet:

Before the assert condition is checked, there’s an additional check for
the __debug__ global variable. It’s a built-in boolean flag that’s true
under normal circumstances and false if optimizations are requested.
We’ll talk somemore about later that in the “common pitfalls” section.

Also, you can use expression2 to pass an optional error message that
will be displayed with the AssertionError in the traceback. This can
simplify debugging even further. For example, I’ve seen code like this:

>>> if cond == 'x':

... do_x()

1cf. Python Docs: “The Assert Statement”

19

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

