

Praise for Prompt Engineering for Generative AI

The absolute best book-length resource I’ve read on prompt engineering. Mike and James

are masters of their craft.

—Dan Shipper, cofounder and CEO, Every

This book is a solid introduction to the fundamentals of prompt engineering and generative

AI. The authors cover a wide range of useful techniques for all skill levels from beginner to

advanced in a simple, practical, and easy-to-understand way. If you’re looking to improve

the accuracy and reliability of your AI systems, this book should be on your shelf.

—Mayo Oshin, founder and CEO, Siennai Analytics, early LangChain

contributor

Phoenix and Taylor’s guide is a lighthouse amidst the vast ocean of generative AI. Their

book became a cornerstone for my team at Phiture AI Labs, as we learned to harness

LLMs and diffusion models for creating marketing assets that resonate with the essence of

our clients’ apps and games. Through prompt engineering, we’ve been able to generate

bespoke, on-brand content at scale. This isn’t just theory; it’s a practical masterclass in

transforming AI’s raw potential into tailored solutions, making it an essential read for

developers looking to elevate their AI integration to new heights of creativity and

efficiency.

—Moritz Daan, Founder/Partner, Phiture Mobile Growth Consultancy

Prompt Engineering for Generative AI is probably the most future-proof way of future-

proofing your tech career. This is without a doubt the best resource for anyone working in

practical applications of AI. The rich, refined principles in here will help both new and

seasoned AI engineers stay on top of this very competitive game for the foreseeable future.

—Ellis Crosby, CTO and cofounder, Incremento

This is an essential guide for agency and service professionals. Integrating AI with service

and client delivery, using automation management, and speeding up solutions will set new

industry standards. You’ll find useful, practical information and tactics in the book,

allowing you to understand and utilize AI to its full potential.

—Byron Tassoni-Resch, CEO and cofounder, WeDiscover

A really interesting and informative read, mixing practical tips and tricks with some solid

foundational information. The world of GenAI is developing at breakneck speed, and

having a toolset that can deliver results, regardless of the foundational model being used,

is worth its weight in gold!

—Riaan Dreyer, chief digital and data officer, Bank of Iceland

The authors expertly translate prompt engineering intricacies into a practical toolkit for

text and image generation. This guide, spanning standard practices to cutting-edge

techniques, empowers readers with practical tips to maximize generative AI model

capabilities.

—Aditya Goel, generative AI consultant

Prompt Engineering for Generative AI

Future-Proof Inputs for Reliable AI Outputs at Scale

James Phoenix and Mike Taylor

Prompt Engineering for Generative AI

by James Phoenix and Mike Taylor

Copyright © 2024 Saxifrage, LLC and Just Understanding Data LTD. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://oreilly.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield

Development Editor: Corbin Collins

Copyeditor: Piper Editorial Consulting, LLC

Proofreader: Kim Wimpsett

Indexer: nSight, Inc.

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

May 2024: First Edition

Revision History for the First Edition

2024-05-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098153434 for release details.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098153434

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Prompt Engineering for

Generative AI, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s

views. While the publisher and the authors have used good faith efforts to ensure that the

information and instructions contained in this work are accurate, the publisher and the authors

disclaim all responsibility for errors or omissions, including without limitation responsibility for

damages resulting from the use of or reliance on this work. Use of the information and

instructions contained in this work is at your own risk. If any code samples or other technology

this work contains or describes is subject to open source licenses or the intellectual property

rights of others, it is your responsibility to ensure that your use thereof complies with such

licenses and/or rights.

978-1-098-15343-4

[LSI]

Preface

The rapid pace of innovation in generative AI promises to change how we live and work, but it’s

getting increasingly difficult to keep up. The number of AI papers published on arXiv is growing

exponentially, Stable Diffusion has been among the fastest growing open source projects in

history, and AI art tool Midjourney’s Discord server has tens of millions of members, surpassing

even the largest gaming communities. What most captured the public’s imagination was

OpenAI’s release of ChatGPT, which reached 100 million users in two months, making it the

fastest-growing consumer app in history. Learning to work with AI has quickly become one of

the most in-demand skills.

Everyone using AI professionally quickly learns that the quality of the output depends heavily on

what you provide as input. The discipline of prompt engineering has arisen as a set of best

practices for improving the reliability, efficiency, and accuracy of AI models. “In ten years, half

of the world’s jobs will be in prompt engineering,” claims Robin Li, the cofounder and CEO of

Chinese tech giant Baidu. However, we expect prompting to be a skill required of many jobs,

akin to proficiency in Microsoft Excel, rather than a popular job title in itself. This new wave of

disruption is changing everything we thought we knew about computers. We’re used to writing

algorithms that return the same result every time—not so for AI, where the responses are non-

deterministic. Cost and latency are real factors again, after decades of Moore’s law making us

complacent in expecting real-time computation at negligible cost. The biggest hurdle is the

tendency of these models to confidently make things up, dubbed hallucination, causing us to

rethink the way we evaluate the accuracy of our work.

We’ve been working with generative AI since the GPT-3 beta in 2020, and as we saw the models

progress, many early prompting tricks and hacks became no longer necessary. Over time a

consistent set of principles emerged that were still useful with the newer models, and worked

across both text and image generation. We have written this book based on these timeless

principles, helping you learn transferable skills that will continue to be useful no matter what

happens with AI over the next five years. The key to working with AI isn’t “figuring out how to

hack the prompt by adding one magic word to the end that changes everything else,” as OpenAI

https://oreil.ly/EN5ay
https://oreil.ly/QX-yy
https://oreil.ly/ZVZ5o
https://oreil.ly/FbYWk
https://oreil.ly/IdIfO
https://oreil.ly/oo262

cofounder Sam Altman asserts, but what will always matter is the “quality of ideas and the

understanding of what you want.” While we don’t know if we’ll call it “prompt engineering” in

five years, working effectively with generative AI will only become more important.

Software Requirements for This Book

All of the code in this book is in Python and was designed to be run in a Jupyter Notebook or

Google Colab notebook. The concepts taught in the book are transferable to JavaScript or any

other coding language if preferred, though the primary focus of this book is on prompting

techniques rather than traditional coding skills. The code can all be found on GitHub, and we

will link to the relevant notebooks throughout. It’s highly recommended that you utilize the

GitHub repository and run the provided examples while reading the book.

For non-notebook examples, you can run the script with the format python

content/chapter_x/script.py in your terminal, where x is the chapter number and

script.py is the name of the script. In some instances, API keys need to be set as

environment variables, and we will make that clear. The packages used update frequently, so

install our requirements.txt in a virtual environment before running code examples.

The requirements.txt file is generated for Python 3.9. If you want to use a different version of

Python, you can generate a new requirements.txt from this requirements.in file found within the

GitHub repository, by running these commands:

`pip install pip-tools`
`pip-compile requirements.in`

For Mac users:

1. Open Terminal: You can find the Terminal application in your Applications folder, under

Utilities, or use Spotlight to search for it.

2. Navigate to your project folder: Use the cd command to change the directory to your project

https://jupyter.org
https://colab.research.google.com
https://oreil.ly/BrightPool
https://oreil.ly/BrightPool
https://oreil.ly/BPreq
https://oreil.ly/YRwP7

folder. For example: cd path/to/your/project .

3. Create the virtual environment: Use the following command to create a virtual environment

named venv (you can name it anything): python3 -m venv venv .

4. Activate the virtual environment: Before you install packages, you need to activate the virtual

environment. Do this with the command source venv/bin/activate .

5. Install packages: Now that your virtual environment is active, you can install packages using

pip . To install packages from the requirements.txt file, use pip install -r

requirements.txt .

6. Deactivate virtual environment: When you’re done, you can deactivate the virtual

environment by typing deactivate .

For Windows users:

1. Open Command Prompt: You can search for cmd in the Start menu.

2. Navigate to your project folder: Use the cd command to change the directory to your project

folder. For example: cd path\to\your\project .

3. Create the virtual environment: Use the following command to create a virtual environment

named venv : python -m venv venv .

4. Activate the virtual environment: To activate the virtual environment on Windows, use

.\venv\Scripts\activate .

5. Install packages: With the virtual environment active, install the required packages: pip

install -r requirements.txt .

6. Deactivate the virtual environment: To exit the virtual environment, simply type:

deactivate .

Here are some additional tips on setup:

Always ensure your Python is up-to-date to avoid compatibility issues.

Remember to activate your virtual environment whenever you work on the project.

The requirements.txt file should be in the same directory where you create your virtual

environment, or you should specify the path to it when using pip install -r .

Access to an OpenAI developer account is assumed, as your OPENAI_API_KEY must be set as

an environment variable in any examples importing the OpenAI library, for which we use

version 1.0. Quick-start instructions for setting up your development environment can be found

in OpenAI’s documentation on their website.

You must also ensure that billing is enabled on your OpenAI account and that a valid payment

method is attached to run some of the code within the book. The examples in the book use GPT-

4 where not stated, though we do briefly cover Anthropic’s competing Claude 3 model, as well

as Meta’s open source Llama 3 and Google Gemini.

For image generation we use Midjourney, for which you need a Discord account to sign up,

though these principles apply equally to DALL-E 3 (available with a ChatGPT Plus subscription

or via the API) or Stable Diffusion (available as an API or it can run locally on your computer if

it has a GPU). The image generation examples in this book use Midjourney v6, Stable Diffusion

v1.5 (as many extensions are still only compatible with this version), or Stable Diffusion XL, and

we specify the differences when this is important.

We provide examples using open source libraries wherever possible, though we do include

commercial vendors where appropriate—for example, Chapter 5 on vector databases

demonstrates both FAISS (an open source library) and Pinecone (a paid vendor). The examples

demonstrated in the book should be easily modifiable for alternative models and vendors, and the

skills taught are transferable. Chapter 4 on advanced text generation is focused on the LLM

framework LangChain, and Chapter 9 on advanced image generation is built on

AUTOMATIC1111’s open source Stable Diffusion Web UI.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

https://oreil.ly/YqbrY
https://oreil.ly/jY8Ai
https://oreil.ly/BbXZ3
https://oreil.ly/KYgij
https://www.midjourney.com
https://oreil.ly/cmTtW
https://oreil.ly/Ha0T5
https://oreil.ly/S0P4s

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as

variable or function names, databases, data types, environment variables, statements, and

keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by

context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Throughout the book we reinforce what we call the Five Principles of Prompting, identifying

which principle is most applicable to the example at hand. You may want to refer to Chapter 1,

which describes the principles in detail.

PRINCIPLE NAME

This will explain how the principle is applied to the current example or section of text.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at

https://oreil.ly/prompt-engineering-for-generative-ai.

If you have a technical question or a problem using the code examples, please send email to

bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this

book, you may use it in your programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code. For example, writing a

program that uses several chunks of code from this book does not require permission. Selling or

distributing examples from O’Reilly books does require permission. Answering a question by

citing this book and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title,

author, publisher, and ISBN. For example: “Prompt Engineering for Generative AI by James

Phoenix and Mike Taylor (O’Reilly). Copyright 2024 Saxifrage, LLC and Just Understanding

Data LTD, 978-1-098-15343-4.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help

companies succeed.

https://oreil.ly/prompt-engineering-for-generative-ai
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise through

books, articles, and our online learning platform. O’Reilly’s online learning platform gives you

on-demand access to live training courses, in-depth learning paths, interactive coding

environments, and a vast collection of text and video from O’Reilly and 200+ other publishers.

For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at https://oreil.ly/prompt-engineering-generativeAI.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/prompt-engineering-generativeAI
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

We’d like to thank the following people for their contribution in conducting a technical review of

the book and their patience in correcting a fast-moving target:

Mayo Oshin, early LangChain contributor and founder at SeinnAI Analytics

Ellis Crosby, founder at Scarlett Panda and AI agency Incremen.to

Dave Pawson, O’Reilly author of XSL-FO

Mark Phoenix, a senior software engineer

Aditya Goel, GenAI consultant

We are also grateful to our families for their patience and understanding and would like to

reassure them that we still prefer talking to them over ChatGPT.

https://www.siennaianalytics.com
https://www.scarlettpanda.com
https://incremen.to
https://oreil.ly/XSL-FO

Chapter 1. The Five Principles of Prompting

Prompt engineering is the process of discovering prompts that reliably yield useful or desired

results.

A prompt is the input you provide, typically text, when interfacing with an AI model like

ChatGPT or Midjourney. The prompt serves as a set of instructions the model uses to predict the

desired response: text from large language models (LLMs) like ChatGPT, or images from

diffusion models like Midjourney.

Here is a simple example of a prompt input for a product name generator (inspired by one of

OpenAI’s examples), and the resulting output from ChatGPT.

Input:

Can I have a list of product names for a pair of shoes that
can fit any foot size?

Output:

Certainly! Here's a list of product names for a pair of shoes
that can fit any foot size:

UniFit SoleStrides
FlexiSize All-Fit Shoes
OmniFit FootFlex
...
AnyStep AdaptiWalkers
FlexiRange UniversalSteps
PerfectGlide MultiFit Shoes

This is already a remarkable response for a naive prompt, which feels like magic because we got

https://chat.openai.com
https://www.midjourney.com
https://oreil.ly/Fc8cq

here with very little effort. As the state-of-the-art models improve, the likelihood you will get

good enough results on your first try goes up. For any throwaway interactions with an AI, where

you don’t plan to do the same task again, the naive approach is all you need.

However, if you planned to put this prompt into production, you’d benefit from investing more

work into getting it right. Mistakes cost you money in terms of the fees OpenAI charges based on

the length of the prompt and response, as well as the time spent fixing mistakes. If you were

building a product name generator with thousands of users, there are some obvious issues you’d

want attempt to fix:

Vague direction

You’re not briefing the AI on what style of name you want, or what attributes it should have.

Do you want a single word or a concatenation? Can the words be made up, or is it important

that they’re in real English? Do you want the AI to emulate somebody you admire who is

famous for great product names?

Unformatted output

You’re getting back a list of separated names line by line, of unspecified length. When you

run this prompt multiple times, you’ll see sometimes it comes back with a numbered list, and

often it has text at the beginning, which makes it hard to parse programmatically.

Missing examples

You haven’t given the AI any examples of what good names look like. It’s autocompleting

using an average of its training data, i.e., the entire internet (with all its inherent bias), but is

that what you want? Ideally you’d feed it examples of successful names, common names in an

industry, or even just other names you like.

Limited evaluation

You have no consistent or scalable way to define which names are good or bad, so you have

to manually review each response. If you can institute a rating system or other form of

measurement, you can optimize the prompt to get better results and identify how many times

it fails.

No task division

You’re asking a lot of a single prompt here: there are lots of factors that go into product

naming, and this important task is being naively outsourced to the AI all in one go, with no

task specialization or visibility into how it’s handling this task for you.

Addressing these problems is the basis for the core principles we use throughout this book. There

are many different ways to ask an AI model to do the same task, and even slight changes can

make a big difference. LLMs work by continuously predicting the next token (approximately

three-fourths of a word), starting from what was in your prompt. Each new token is selected

based on its probability of appearing next, with an element of randomness (controlled by the

temperature parameter). As demonstrated in Figure 1-1, the word shoes had a lower probability

of coming after the start of the name AnyFit (0.88%), where a more predictable response would

be Athletic (72.35%).

Figure 1-1. How the response breaks down into tokens

LLMs are trained on essentially the entire text of the internet, and are then further fine-tuned to

give helpful responses. Average prompts will return average responses, leading some to be

underwhelmed when their results don’t live up to the hype. What you put in your prompt

changes the probability of every word generated, so it matters a great deal to the results you’ll

get. These models have seen the best and worst of what humans have produced and are capable

of emulating almost anything if you know the right way to ask. OpenAI charges based on the

number of tokens used in the prompt and the response, so prompt engineers need to make these

tokens count by optimizing prompts for cost, quality, and reliability.

Here’s the same example with the application of several prompt engineering techniques. We ask

for names in the style of Steve Jobs, state that we want a comma-separated list, and supply

examples of the task done well.

Input:

Brainstorm a list of product names for a shoe that fits any
foot size, in the style of Steve Jobs.

Return the results as a comma-separated list, in this format:
Product description: A shoe that fits any foot size
Product names: [list of 3 product names]

Examples
Product description: A refrigerator that dispenses beer
Product names: iBarFridge, iFridgeBeer, iDrinkBeerFridge

Product description: A watch that can tell accurate time in
space
Product names: iNaut, iSpace, iTime

Product description: A home milkshake maker
Product names: iShake, iSmoothie, iShake Mini

Output:

https://openai.com/pricing

Product description: A shoe that fits any foot size
Product names: iFitFoot, iPerfectFit, iShoeSize

While no prompt is ever perfect, this prompt is optimized to reliably deliver solid product names

in the right format. The user of your product name generator can choose somebody other than

Steve Jobs to get the types of names they like, they can change the response format if needed,

and the output of this prompt can become the input of another. Finally, you could periodically

update the examples you use in the prompt based on user feedback, making your system smarter

over time.

Overview of the Five Principles of Prompting

The process for optimizing this prompt follows the Five Principles of Prompting, which we will

dissect using this example in the remainder of this chapter, and recall throughout the book. They

map exactly to the five issues we raised when discussing the naive text prompt. You’ll find

references back to these principles throughout the rest of the book to help you connect the dots to

how they’re used in practice. The Five Principles of Prompting are as follows:

Give Direction

Describe the desired style in detail, or reference a relevant persona

Specify Format

Define what rules to follow, and the required structure of the response

Provide Examples

Insert a diverse set of test cases where the task was done correctly

Evaluate Quality

Identify errors and rate responses, testing what drives performance.

Divide Labor

Split tasks into multiple steps, chained together for complex goals

These principles are not short-lived tips or hacks but are generally accepted conventions that are

useful for working with any level of intelligence, biological or artificial. These principles are

model-agnostic and should work to improve your prompt no matter which generative text or

image model you’re using. We first published these principles in July 2022 in the blog post

“Prompt Engineering: From Words to Art and Copy”, and they have stood the test of time,

including mapping quite closely to OpenAI’s own Prompt Engineering Guide, which came a

year later. Anyone who works closely with generative AI models is likely to converge on a

similar set of strategies for solving common issues, and throughout this book you’ll see hundreds

of demonstrative examples of how they can be useful for improving your prompts.

We have provided downloadable one-pagers for text and image generation you can use as a

checklist when applying these principles. These were created for our popular Udemy course The

Complete Prompt Engineering for AI Bootcamp (70,000+ students), which was based on the

same principles but with different material to this book.

Text Generation One-Pager

Image Generation One-Pager

To show these principles apply equally well to prompting image models, let’s use the following

example, and explain how to apply each of the Five Principles of Prompting to this specific

scenario. Copy and paste the entire input prompt into the Midjourney Bot in Discord, including

the link to the image at the beginning, after typing /imagine to trigger the prompt box to

appear (requires a free Discord account, and a paid Midjourney account).

Input:

https://s.mj.run/TKAsyhNiKmc stock photo of business meeting
of 4 people watching on white MacBook on top of glass-top
table, Panasonic, DC-GH5

Figure 1-2 shows the output.

https://oreil.ly/RYYiV
https://oreil.ly/dF8q-
https://oreil.ly/V40zg
https://oreil.ly/VCcgy
https://oreil.ly/q7wQF
https://discord.com
https://www.midjourney.com

