






30-SECOND
CODING

The 50 essential principles that instruct technology, each explained in half a
minute

Editor
Mark Steadman

Contributors
Adam Juniper
Suze Shardlow

Mark Steadman

Illustrator
Nicky Ackland-Snow



CONTENTS

Introduction

First Computers

GLOSSARY

The Industrial Revolution

The Difference Engine

Human Computers

Task-Specific Computers

Mechanical Computers

Codebreakers

Instruction Sets & Stored Programs

The Fetch-Execute Cycle

The Transistor Revolution

The Personal Computer Age

Profile: Ada Lovelace

Instructing Computers

GLOSSARY

Assembly Language



Fortran: The First High-Level Language

Procedural Languages

Compiled Code

Object-Oriented Programming (OOP)

Code Libraries

Running Code in the Cloud

Profile: Grace Hopper

Code Concepts

GLOSSARY

Binary & Bits

Data Types

Data Structures: Arrays

Variables

If-Then-Else: Conditional Statements

Loops & Iterations

Functions

Making Code Portable

Buffering & Caches

Eventual Consistency



Profile: Linus Torvalds

Profile: Steve Wozniak

What Coders Do

GLOSSARY

User Interface & User Experience

Database Operation: CRUD

Web Development

Scripting

Engineering

Agile Development & the Scrum

Hacking

Debugging

Scaling & Pseudocode

Profile: Tim Berners-Lee

Solving Problems with Code

GLOSSARY

Algorithms

The FizzBuzz Test

Sorting & Big O Notation



The Two Generals Problem

Compression & the Huffman Tree

Search Engine Optimization

Face Detection

Unicode

End-to-End Encryption

Pattern Matching Languages

Profile: Larry Page

Modern Concerns & Concepts

GLOSSARY

AI: Artificial Intelligence

Black Box

Computers Cannot Determine Truth

What is Blockchain?

Detecting Bots

Integrated Development Environment

Profile: Alan Turing

Appendices

Resources



Notes on Contributors

Index

Acknowledgments



INTRODUCTION

Mark Steadman

Code is one of the most significant building blocks in modern society. Every
time we send an emoji to a friend, we’re sending a tiny piece of code (a string
of letters and numbers) across a virtual wire. That string of numbers and
letters, called hexadecimal code, is then read by our friend’s phone and
associated with an image. When we pick up the phone to talk to our friend,
code converts our analogue voice to digital data, which is encoded at one end
and then decoded at the other.

What we call ‘code’ is a set of instructions, written in a particular
language. That language depends on a number of things, like how easy it is
for us humans to read and write it, how quickly a computer can understand
it, the number of other computers that speak the same language and the
features that language provides. Coding (or programming) can be as simple
as adding two numbers together, or as complex as constructing a vast neural
network that can perform complicated machine learning tasks. Code can
enable mass change within a society, or it can help you rescue a few minutes
from your busy day.

You don’t need to have aced your maths exams in order to be a great
coder. As long as you can think logically, putting one thought in front of the
other, you can code. Nor do you need to memorize thousands of obscure
commands, because most of us still turn to Google when we can’t remember
how a particular aspect of our programming language works!

You don’t even need what you might consider a traditional computer in
order to write code. A tablet or a smartphone will do, and there are apps that
can help you learn, and achieve practical results. In this book we’ll cover the
key events in the evolution of computer programming, from the first-ever
human computers to modern cloud infrastructures that can help scale
bedroom businesses up to massive corporations.



Coding is no longer the preserve of the stereotypical basement nerd. It’s
everywhere, from those blocky square barcodes that we scan with our
phones, to the encryption that keeps our WhatsApp conversations from
being seen by prying eyes. It’s the job of these pages to open your eyes to that
wider world so you can use it as you choose, whether that’s to build the next
TikTok or just understand why it’s a good idea to turn the computer off and
on again.

A tour of this book



In this book we present the ideas closest to the hearts of computer
programmers (you can add your own joke about a well-known science-
fiction franchise here). In academic circles, what you might know as
programming is known as ‘computer science’, and it is a subject that isn’t
that old. For that reason, we’ve begun by devoting a whole chapter to the
emergence of the computer as we understand it today, before breaking down
the means by which we can instruct them. Whether it’s introducing the
Difference Engine or face detection, each entry is broken into several parts.
The centrepiece is the 30-second code – the explanation itself. If you’re
short on time, the 3-second bit squeezes the essence of that into a single
sentence, while the 3-minute byte offers a broader context.

Computing is also more about the people involved than you likely
imagined the first time you saw the blue screen of death. For that reason,
this book introduces many of the names behind innovations in code and
computing in general. Check out the 3-second biographies and you’ll find
a little more about many of the big names past and present. The book also
features more detailed profiles of some folk who you’ve likely heard of even
beyond the geek-o-sphere!





FIRST COMPUTERS



FIRST COMPUTERS
GLOSSARY

algorithm
The term for the mathematical aspect of a computer program; often an over-
simplification. For example, Google is often described as having an
algorithm in the singular, but many aspects go towards the system’s ranking
of websites.

base
In maths, the base is the number on which the counting scale is based. ‘Base
10’ means writing numbers using ten symbols, including zero, so 0–9.

Bernoulli numbers
Named for mathematician Jacob Bernoulli. He described a probability – the
same each time – being calculated over repetition of the same event, for
example a coin toss or dice throw.

Boolean logic
In mathematics, something that is Boolean (such as the result of a certain
formula) can have only two states: true or false. The term leapfrogged into
computer science not just to refer to early systems but, for example, if you
encounter a checkbox on a web form it’ll likely be linked to an on/off or
true/false field in a database.

binary
Literally means composed of two things, or having two parts. In computing,
a system of counting that uses base 2, and can be depicted: 0, 1, 10, 11, 100,
101, 111, 1000 and so on.



bit
A bit may only have two states: on or off (usually represented as 0 or 1). The
word is a portmanteau of binary digit.

DOS
Disk Operating System, as opposed to DoS (denial of service – a cyber
attack).

floating point
A method of mathematical representation for real numbers that are
especially large or small, which takes the form [significand] X [base] to the
power of [exponent]: 2.5951 X 104 = 25951. You might also choose a limit on
the number of digits in the significand to reduce the overall computational
load on the computer – limit it to three decimal places and we would only
record 2.595*104 (in code * = multiply).

general-purpose computer
A computer that can be programmed to carry out different operations
(traditionally arithmetic or logical). Earlier devices could perform only the
operation they were designed for.

loop
In programming, a section of the program repeated (either until a condition
is met or, by mistake, infinitely causing the program never to end).

memory
The element of a computer that stores information for the active program, as
opposed to ‘storage’.

operating system
System software that manages the computer hardware, provides common
resources for applications, and allows the launching and termination of



applications.

PC
Personal Computer – a name coined to distinguish early PCs from the
expensive room-sized computers of the time.

processor
Also known as the Central Processor Unit, or CPU. This component of a
digital computer performs the calculations.

program
As a noun, a precise set of instructions to tell a computer what to do and
how. It can also be used as a verb, meaning the act of creating a program.

punch card
A card specifically designed to store information. A batch of identical cards
would be printed, for example with the numbers 1 to 10 written on them. The
operator could store information by punching a hole through the
appropriate number. A tabulating machine could read the card from the
position of the hole(s) in it.

semiconductor
A material that can conduct less than a fully conductive material (such as
copper) and more than insulators (such as ceramics). Silicon, an element, is
a semiconductor, and (unlike metal) it becomes more conductive as its
temperature increases.

silicon
This is a base metal, but in computing usually refers to the components
(integrated circuits) made from it, and especially central processing units,
for example, ‘This computer has Apple silicon’.



software
A collection of data that can be read by the computer as instructions on how
to work, as opposed to the hardware that actually performs the work.

statement
A single line of code correctly written that makes a command.

tabulating machine
The machine that processed punch cards and recorded totals or performed
similar actions.

variable
In programming, all data being manipulated needs to be stored in the
computer’s memory. A space is allocated for each piece of data and given a
name so the program can access it – this is the variable.



THE INDUSTRIAL REVOLUTION

the 30-second code

When you imagine computer code, it’s hard not to picture someone with
questionable (or obsessive) hygiene hunched over a computer. Before we
even get to the fact that this simply isn’t a fair representation of the
community, it’s also important to realize that a concept of programming
existed long before there were little glowing screens or QUERTY keyboards
to complete the stereotype. In fact, the point at which humanity first began
to hand over repetitive tasks to machines was the Industrial Revolution, the
vanguard of which was the textile industry. In 1750, Britain imported around
1,100 tonnes of cotton, which was spun on handwheels. By the year 1800
that figure was 24,000 tonnes and growing fast. The key driving factor was
the arrival of stationary steam engines powering large factories, or ‘mills’,
processing the growing supply of cotton from the American colonies.
Britain’s rapid industrialization quickly made it the leading global power,
which didn’t go unnoticed by Napoleon. The French ruler enthusiastically
supported his growing textile industry in Lyon, where Joseph-Marie
Jacquard was developing his loom-related inventions. His 1801 Jacquard
loom featured punch cards to weave patterned silk automatically, giving
France the edge. It was made property of the French state; there were 11,000
in use in France a decade later.

3-SECOND BIT

The Industrial Revolution created the conditions for the punch-card system of data storage long
before computing had been invented.

3-MINUTE BYTE

Punch cards allowed needles to pass through holes in the card, or not when no hole existed. By
being either there or not, the holes acted with exactly the kind of binary precision that appealed



to Charles Babbage (see here), who even ordered a portrait of Jacquard to be woven on one of his
looms, which required 24,000 punch cards.

RELATED TOPICS

See also

THE DIFFERENCE ENGINE

MECHANICAL COMPUTERS

3-SECOND BIOGRAPHIES

JAMES WATT

1736–1819

Scottish inventor who made the steam engine practical in 1765, effectively launching the first
Industrial Revolution

JOSEPH-MARIE JACQUARD

1752–1834

French weaver and merchant awarded the Legion of Honour for inventing the automated loom

30-SECOND TEXT

Adam Juniper


