
M A N N I N G

Leo Porter ● Daniel Zingaro
Foreword by Beth Simon, Ph.D.

With GitHub Copilot and ChatGPT

The function design cycle with Copilot, augmented to include debugging

MANN I NG
Shelter Island

Learn AI-Assisted
Python Programming

LEO PORTER
DANIEL ZINGARO

With GitHub Copilot and ChatGPT

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2024 by Manning Publications Co. All rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN: 9781633437784
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

	 Development editor: 	 Rebecca Johnson
	 Technical editor: 	 Peter Morgan
	 Review editor: 	 Dunja NikitoviÊ
	 Production editor: 	 Aleksandar DragosavljeviÊ
	 Copy editor:	 Katie Petito
	 Technical proofreader: 	 Mark Thomas
	 Typesetter: 	 Tamara ŠveliÊ SabljiÊ
	 Cover designer: 	 Marija Tudor

Dan thanks his wife, Doyali, for trading some of their time,
again, to help this book exist.

Leo thanks his wife, Lori, and his children Sam and Avery
for their love and support.

iv

contents
foreword	 ix
acknowledgments	 xi
introduction	 xiii
about the authors	 xxii
about the cover illustration	 xxiv

	 1	 Introducing AI-assisted programming with Copilot  1
	 1.1	 How we talk to computers   2

Making it a little easier  2 ■ Making it a lot easier  3

	 1.2	 About the technology   3
Copilot, your AI Assistant  4 ■ How Copilot works behind the
scenes—in 30 seconds  5

	 1.3	 How Copilot changes how we learn to program  6

	 1.4	 What else can Copilot do for us?   7

	 1.5	 Risks and challenges when using Copilot   8

	 1.6	 The skills we need   10

	 1.7	 Societal concerns about AI code assistants like
Copilot   11

		 Summary   12

	 vcontents 	 v

	 2	 Getting started with Copilot  13
	 2.1	 Time to set up your computer to start learning  14

Overview of the software in your programming environment  14

	 2.2	 Getting your system set up  15

	 2.3	 Working with Copilot in Visual Studio Code  16
Set up your working folder  17 ■ Check to see if your setup is
working properly  18

	 2.4	 Addressing common Copilot challenges  20

	 2.5	 Our first programming problem  22
Showcasing Copilot’s value in a data processing task  23

	 Summary  32

	 3	 Designing functions  33
	 3.1	 Functions  34

The components of a function  35 ■ Using a function  37

	 3.2	 Benefits of functions  38

	 3.3	 Roles of functions  40

	 3.4	 What’s a reasonable task for a function?  43
Attributes of good functions  43 ■ Examples of good (and bad)
leaf functions  44

	 3.5	 The cycle of design of functions with Copilot  45

	 3.6	 Examples of creating good functions with Copilot  46
Dan’s stock pick   47 ■ Leo’s password   50 ■ Getting a strong
password  54 ■ Scrabble scoring  55 ■ The best word  57

		 Summary  59

	 4	 Reading Python code: Part 1  60
	 4.1	 Why we need to read code  61

	 4.2	 Asking Copilot to explain code  63

	 4.3	 Top 10 programming features you need to know:
Part 1  66

#1. Functions  67 ■ #2. Variables  67 ■ #3. Conditionals  69
#4. Strings  72 ■ #5. Lists  74 ■ Conclusion  76

		 Summary  77

vivi contents

	 5	 Reading Python code: Part 2  78
	 5.1	 Top 10 programming features you need to know:

Part 2  79
#6. Loops  79 ■ #7. Indentation   83 ■ #8. Dictionaries  90
#9. Files  91 ■ #10. Modules   94

	 Summary  98

	 6	 Testing and prompt engineering  99
	 6.1	 Why it is crucial to test code  99

	 6.2	 Closed-box and open-box testing  100
Closed-box testing  101 ■ How do we know which test cases to
use?  103 ■ Open-box testing  103

	 6.3	 How to test your code  104
Testing using the Python prompt  105 ■ Testing in your Python
file (we won’t be doing it this way)  105 ■ doctest  105

	 6.4	 Revisiting the cycle of designing functions with
Copilot  108

	 6.5	 Full testing example  110
Finding the most students we can add to a row  110 ■ Improving
the prompt to find a better solution  113 ■ Testing the new
solution  114

	 6.6	 Another full testing example—Testing with files  116
What tests should we run?  117 ■ Creating the function  120
Testing the function  120 ■ Common challenges with
doctest  121

		 Summary  123

	 7	 Problem decomposition  124
	 7.1	 Problem decomposition  125

	 7.2	 Small examples of top-down design  125

	 7.3	 Authorship identification  127

	 7.4	 Authorship identification using top-down design  129

	 7.5	 Breaking down the process subproblem  130
Figuring out the signature for the mystery book  130

	 7.6	 Summary of our top-down design  138

	 viicontents 	 vii

	 7.7	 Implementing our functions  138
clean_word  139 ■ average_word_length  140 ■ different_to_
total  142 ■ exactly_once_to_total  142 ■ split_string  144
get_sentences  146 ■ average_sentence_length  146
get_phrases  147 ■ average_sentence_complexity  147
make_signature  148 ■ get_all_signatures   149
get_score  152 ■ lowest_score  153 ■ process_data  154
make_guess  154

	 7.8	 Going further  156

		 Summary  157

	 8	 Debugging and better understanding your code  158
	 8.1	 What causes errors (bugs)?  159

	 8.2	 How to find the bug  160
Using print statements to learn about the code behavior  160
Using VS Code’s debugger to learn about the code behavior  162

	 8.3	 How to fix a bug (once found)  169
Asking Copilot to fix your bug via chat  169 ■ Giving Copilot
a new prompt for the whole function  171 ■ Giving Copilot a
targeted prompt for part of a function  171 ■ Modifying the code
to fix the bug yourself  172

	 8.4	 Modifying our workflow in light of our new skills  173

	 8.5	 Applying our debugging skills to a new problem  174

	 8.6	 Using the debugger to better understand code  180

	 8.7	 A caution about debugging  180

		 Summary  181

	 9	 Automating tedious tasks  182
	 9.1	 Why programmers make tools  183

	 9.2	 How to use Copilot to write tools  184

	 9.3	 Example 1: Cleaning up email text  184
Conversing with Copilot  185 ■ Writing the tool to clean up
email  189

	 9.4	 Example 2: Adding cover pages to PDF files  192
Conversing with Copilot  194 ■ Writing the tool  198

viii contentsviii

	 9.5	 Example 3: Merging phone picture libraries  206
Conversing with Copilot  208 ■ Top-down design  211
Writing the tool  212

	 Summary  215

	 10	 Making some games  216
	 10.1	 Game programs  217

	 10.2	 Adding randomness  218

	 10.3	 Example 1: Bulls and Cows  220
How the game works  220 ■ Top-down design  222
Parameters and return types  224 ■ Implementing our
functions  226 ■ Adding a graphical interface for Bulls and
Cows  233

	 10.4	 Example 2: Bogart  234
How the game works   234 ■ Top-down design  236
Implementing our functions   240

		 Summary  247

	 11	 Future directions  248
	 11.1	 Prompt patterns  248

Flipped interaction pattern  250 ■ Persona pattern  253

	 11.2	 Limitations and future directions  255
Where Copilot (currently) struggles  255 ■ Is Copilot a new
programming language?  256

Summary  260

references	  261

index  264

ix

foreword
It’s an awesome time to learn programming. Why? Let me use an analogy to
explain.

I like to make my own bread. I make it more frequently, and more reliably,
when I use my stand mixer to knead the dough compared to kneading it by
hand. Maybe you’d say that’s lazy. I’d say it makes me more productive and
more likely to actually make the bread. Maybe you have something that makes
your life easier by taking over a tedious task, leaving you free to focus on more
important or interesting things. Do you have a car that supports you in parallel
parking? I recall when Gmail added spell and grammar checks in languages
other than English. My husband’s German relative were so excited that he was
writing them longer emails—because the effort of remembering little-used
German language specifics went away and allowed him to spend more time on
the content!

Sadly, until recently, when learning programming, you had no equivalent of
a stand mixer or grammar check to support you. And there are lots of tedious
things to learn and remember when you start programming.

Good news! As of spring 2023, radically new and (we think) effective sup-
port is finally here. You are about to learn programming with one of the most
exciting human task supporters so far this century: artificial intelligence. Spe-
cifically, this book seeks to support you in developing your ability to program
in Python to solve computational problems more easily and faster by teaching
you using a tool called GitHub Copilot. Copilot is a programming support tool
that uses something called a LLM (large language model) to draw “help” from

x forewordx

a huge number of previously written programs. Once you learn how to direct it
(sadly, it’s more complicated than effectively using a stand mixer), Copilot can
dramatically increase your productivity and success in writing programs to solve
your problem.

But should you use Copilot? Are you really learning to program if you use it?
Preliminary evidence looks positive—showing that students who learned with
Copilot, when assigned a programming task to be done without the help of
Copilot, did better than students who learned without Copilot (and also did
the task without Copilot) [1]. That said, compared to what we used to teach in
an introductory programming class, there are different skills you will need to
focus on when programming with Copilot, specifically problem decomposition
and debugging (it’s OK if you don’t know what those are). Just know, practicing
programmers need to know those skills as well, but we previously weren’t able
to teach them explicitly or effectively in introductory courses, because students
didn’t have the brain space left for learning these “high-level skills” while focus-
ing on nit-picky things like spelling and grammar (programming languages
have these, just like real world languages).

Leo and Dan are expert computing educators and researchers; the decisions
that they’ve made to guide your learning in this book are grounded in what we
know about teaching and learning programming. I’m excited that, with this
book, they’re taking steps toward what the next wave of teaching programming
will look like.

So, congratulations! Whether you have never done any programming or
whether you started to learn before and got frustrated… we think you will find
learning to program with Copilot transformative and will allow you to engage
your brain in more meaningful and “expert-like” programming experiences!

—Beth Simon, Ph.D.

xi

acknowledgments
Writing a book about technology in flux was new for us. Each day of writing
started with us reading the new articles, opinion pieces, and capabilities of
LLMs. Early plans had to be scrapped or revised. New ideas presented them-
selves for later chapters only after we’d written earlier chapters and had access
to the latest LLM features. We thank the entire Manning Publications team for
their agility and help throughout the process.

In particular, we thank our Development Editor Rebecca Johnson for her
expertise, wisdom, and support.

Rebecca provided insightful feedback, constructive criticism, and creative
suggestions that have greatly improved the quality and clarity of our work.
Rebecca was supportive and encouraging and helped us manage book timelines
and our busy schedules. Thank you, Rebecca—you went above and beyond for
us.

We also thank our Technical Editor Peter Morgan and our Technical Proof-
reader Mark Thomas. Both offered valuable contributions to the quality of the
book.

To all the reviewers: Aishvarya Verma, Andrew Freed, Andy Wiesendanger,
Beth Simon, Brent Honadel, Cairo Cananea, Frank Thomas-Hockey, Ganesh
Falak, Ganesh Swaminathan, Georgerobert Freeman, Hariskumar Panakmal,
Hendrica van Emde Boas, Ildar Akhmetov, Jean-Baptiste Bang Nteme, Kalai C.
E. Nathan, Max Fowler, Maya Lea-Langton, Mikael Dautrey, Monica Popa, Nata-
sha Chong, Ozren Harlovic, Pedro Antonio Ibarra Facio, Radhakrishna Anil,

xii acknowledgmentsxii

Snehal Bobade, Srihari Sridharan, Tan Wee, Tony Holdroyd, Wei Luo, Wondi
Wolde, your suggestions helped make this a better book.

We thank our colleagues for supporting our work and offering their ideas for
what such a book should attempt to do. Many of their ideas have informed our
thinking as we sought to redefine what an introductory programming course
looks like. We particularly thank Brett Becker, Michelle Craig, Paul Denny, Bill
Griswold, Philip Guo, and Gerald Soosai Raj.

xiii

introduction
Software is essential today. It’s hard to think of any industry where software
isn’t changing practically everything about how work is done. Manufacturing
needs software to monitor production and shipping, let alone the robots that
increasingly perform the actual task. Advertising, politics, and fitness, among
others, are awash in big data and they routinely use software to make sense of
it. Video games and movies are created using software. We could go on and on,
but you get the point.

The result has been that more people than ever want to learn how to pro-
gram. We’re not just talking about the computer science, computer engi-
neering, and data science majors at universities who have been in a perpetual
“enrollment crisis” for the past decade. We’re also talking about the scientist
who needs to write software to evaluate their data, the office worker who wants
to automate some of their tedious data processing tasks, and the hobbyist who
wants to create a fun video game for their friends.

Despite the desire to learn programming, there are decades of research in
our field (computing education) that have identified many reasons for why
learning to write software is hard. Even after you figure out how to solve the
problem, you have to tell a machine how to accomplish it in a programming
language whose rules are unforgiving. Granted, writing programs in a language
like Python is substantially easier than in machine code using punch cards, but
it’s still hard. We know it’s hard because we’ve seen the failure rates of intro-
ductory computer science courses. We’ve seen first-hand as we’ve watched

xiv introductionxiv

motivated and intelligent students fail our courses, sometimes multiple times,
before they succeed or, worse, give up.

But what if we could talk to computers in a better way? A way that doesn’t
require us to know all the detailed syntax rules that trip up most novices. That
era has just begun thanks to AI assistants like Copilot that offer intelligent
code suggestions in the same way ChatGPT can write reasonable text when
prompted. This book is for everyone who wants to learn how to write software in
the AI assistant era. We’re excited to be on your learning journey with you.

AI assistants change how programming is done
We’ll introduce you to your AI assistant, Copilot, in chapter 1, but we want to
give you a brief overview now. If you read the news headlines or even opinion
pieces by lauded software engineering professionals talking about Copilot or
ChatGPT, you’ve seen that opinions run the gamut. Some people say that AI
assistants mean the end of all programming jobs. Others say that AI assistants
are so hopelessly flawed you are better without them. These views of the world
are at such extremes that it’s easy to poke holes in either argument. AI assis-
tants learn from existing code, so if some new tool/technology is developed,
humans will need to write the bulk of the initial code. As a recent article well
expressed, there isn’t a lot (or any) code out there for quantum computers
since they are still in their infancy [1]. So human programmers aren’t going
away, at least not any time soon. At the same time, in our time working with
Copilot, we’ve seen how powerful it is. Both of us have written software for
decades and Copilot can often give us correct code much faster than we could
write it on our own. To ignore such a powerful tool seems analogous to a car-
penter refusing to use power tools.

As educators, the opportunity to help people learn to write software is
instantly apparent. Why should students spend so much time fighting with syn-
tax when writing code from scratch when the code suggested by an AI assistant
is almost always syntactically correct? Why should students have to reach out to
professors, instructional staff, friends, or internet forums for help explaining
what a section of code is doing when AI assistants are really good at explaining
code (particularly for questions asked by novices)? And if AI assistants often
write correct code when solving common programming problems (by learn-
ing from huge volumes of code written in the past), why shouldn’t students be
using it to help them program?

Be warned that this doesn’t mean that writing software is now just easy and
that we can entirely offload the skill of programming onto the AI. Instead, the
skills to write good software are evolving. Skills like problem decomposition,
code specification, code reading, and code testing have become even more

	 xvintroduction 	 xv

important than they were in the past; skills like knowing library semantics and
syntax become less important. We’ll say more about this in the next chapters,
but this book will teach you the skills that matter going forward. These skills will
be valuable whether you dabble in writing software from time to time or you are
starting a career in software engineering.

Audience
We have two primary audiences for the book. The first is everyone who has
thought about writing software (and even tried and failed before) to make
their lives better in some way. This includes the accountant who gets frustrated
that their software can’t do what they want so they are left solving problems by
hand. Or scientists who want to analyze their data quickly, but existing tools
aren’t capable of doing what they want. We also imagine the office manager
who feels limited by what their spreadsheet software can do and wants a better
way to gain insight from their data. Additionally, we imagine the exec at a small
company who wants to be notified when something is said publicly on social
media about their company but can’t afford to pay a software engineering
team to write the tool for them. And we imagine the hobbyist of any age who
just wants to write software for fun—whether it be for making their own small
video games, storytelling with pictures, or creating fun family photo collages.
These are just some of the people who want to write software to improve some
element of their professional or personal lives.

The second is the student who is considering a career in software engineer-
ing or programming and wants to learn how to write software. They want to
learn the basics and start creating interesting software, without the trappings of
a classic computer science class. Certainly, there will be more courses or books
that will follow this first book on the road to becoming a professional software
developer, but this will hopefully be a fun and rewarding first step.

What we expect from you
This book requires no background whatsoever in programming. If you learned
some programming and forgotten or it didn’t go well the first time, we think
this is a great place to resume your learning.

This book does require basic computer literacy. This means you should be
comfortable installing software, copying files between folders, and opening files
on your computer. If you don’t have those skills, you could still start this book,
but realize there may be moments when you need to look to outside resources
(e.g., YouTube videos on how to copy a file from one folder to another).

xvi introductionxvi

You’ll also need a computer where you have permission to install software so
you can follow along and apply the ideas we’re learning. Any Windows, Mac, or
Linux personal computer or laptop will work.

What you will be able to do after reading this book
In this book, we’re going to teach you how to use Copilot to write Python code.
We’ll teach you how to identify whether that code does what you want, and
what to do when it doesn’t. We’ll teach you enough about Python to be able
to read it for a general understanding of what it does and whether it is doing
something potentially meaningful.

We won’t, however, teach you how to program in Python entirely from
scratch. You’ll be in a good position to learn to do that with other resources fol-
lowing this book if you like—but for many tasks, as we will show you, it may not
be necessary.

We don’t know exactly what it will look like to be a professional programmer
or software engineer in light of AI coding assistants. That role is already chang-
ing and will change further as the AI technology improves. For now, we will say
that you need more than this book to be a professional programmer or software
engineer. You’ll need to know a great deal more about Python and other com-
puter science topics to get there.

The good news is that learning how to program using Copilot will make you
capable of writing basic software to address common needs. The software will
be more complex than what we typically teach in an introductory course, and
you’ll be able to write these useful programs without banging your head on syn-
tax or spending months learning just Python. If you wish to continue learning
about writing professional software, this will be your first step toward mastery.

By the end of this book, you will be able to write basic software capable of data
analysis, automating repetitive tasks, and creating simple games, among many
others.

The challenge in working with AI assistants
We expect you’re ready to jump into a technology that is maturing and chang-
ing quickly. What you see from Copilot may not match what you see in the book. Copilot
is advancing and changing daily, and we cannot possibly keep up to the minute
with such a moving target. More than that, Copilot is nondeterministic, which
means that if you ask it to solve the same task multiple times, it may not give
you the same code each time. And sometimes you’ll get correct code for a task,
but then if you ask again, you get code that is not correct. So even if you use
the exact same prompts we do, you will likely see different code responses than
we do. Much of this book is devoted to ensuring you learn how to determine

	 xviiintroduction 	 xvii

whether the answer from Copilot is right or not and, if it isn’t, how to fix it. In
short, we hope you’re ready for what it means to learn on the leading edge of
technology.

Why we wrote this book
Both of us have been professors for over a decade and programmers for a
decade longer than that. Our care for our students’ success led us to become
researchers studying how students learn computing and how to improve their
outcomes. Between the two of us, we’ve written nearly a hundred articles in our
field exploring pedagogies, student beliefs, and assessments—all with the goal
of improving the student experience.

We’ve also had students in our office hours who struggled to learn how to
program, even when we are employing best practices in teaching computing.
These are intelligent students who want to learn, but who are tripped up on
some part of the programming process. The programming process has many
steps, from understanding a problem, to coming up with a solution, to impart-
ing the process of solving the problem to a computer. So, when we began work-
ing with AI assistants, specifically Copilot, we instantly saw how it could be a
game changer for students, particularly in improving that last step “imparting
the process of solving the problem to a computer”. We want our students to suc-
ceed. We want you to succeed. And we believe AI assistants can help.

Warning: beware of elitism
One of the saddest things we see in our classes at our universities is students
intimidating other students. We’ve heard students in our introductory Python
programming courses try to show off how they already learned to program in
such-and-such programming language and the affect that has on the other stu-
dents in the course. Although we try to gently point these students to other,
more appropriate courses, we’ve also seen that the students bragging in this
way are often the students struggling to pass at the end of the term, hav-
ing vastly over-estimated their proficiency at the start. And it doesn’t take a
licensed psychologist to see that this kind of posturing comes from a place of
low self-esteem.

Beyond students in our introductory courses, we see how different kinds
of programmers treat each other and their respective fields. For example,
Human-Computer Interaction (HCI) professionals study how to improve the
design of software to make it better for its human users. Sounds important,
right? Unfortunately, that field was put down by computer scientists as merely
“applied psychology” for years, and then major companies showed that maybe,
just maybe, if you care about the users of your technology, those people might

xviii introductionxviii

just appreciate it more and be inclined to buy it. It’s not surprising that HCI
quickly became mainstream in computer science. This snobbery isn’t limited
to specific fields. We even see it occurring between programmers of different
languages. For example, we’ve seen C++ (one programming language) pro-
grammers say silly things like JavaScript (another programming language) pro-
gramming isn’t real programming. (It definitely is real programming, whatever
that might mean!)

All of this, in our opinion, is unproductive and unfortunate posturing that
pushes people away from the field. A comic we both enjoy called XKCD, cap-
tured the ludicrousness of this posturing well in “Real Programmers” [2]. In
the comic, programmers argue about what the best text editor app is for pro-
gramming. Programmers need to use a text editor to enter their code, which is
exactly what you’ll start doing in chapter 2. There’s been a long-standing, and
mostly unserious, debate over the best editors (“emacs” is one of many editors).
The comic is making light of the meaninglessness of the debate in a truly clever
way.

The reason we’re talking about this unfortunate aspect of our field is we
know what some people will say about learning to program with Copilot. They’ll
say that to learn to write software, you have to learn how to write code entirely
from scratch. And for future professional engineers, we actually agree that at
some point in your career, you should learn to write code from scratch. But, for
most people and even people starting their studies in software engineering, we
wholeheartedly disagree that writing code entirely from scratch makes sense
anymore as a starting place. So, if someone criticizes you for doing something
to make yourself or your life or the world better, we encourage you to look to
the immortal wisdom of Taylor Swift and just “Shake it off”.

How this book is organized: a roadmap
This book is divided into 11 chapters. We recommend that you read this book
from beginning to end, rather than skipping around. That’s because most
chapters introduce skills that will be assumed in later chapters:

¡	Chapter 1 describes what AI code assistants are, how they work, and why
they are irrevocably changing how programming is done. It also explores
the concerns we need to keep in mind when using AI coding assistants.

¡	Chapter 2 helps you set up your computer to be able to program with
GitHub Copilot (that’s your AI coding assistant) and Python (that’s the
programming language we’ll use). Once your computer is set up, we’ll
use Copilot in our first programming example: doing some analysis on
freely available sports data.

