

PROFESSIONAL

C++

Sixth Edition

Marc Gregoire

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394193172 (Paperback), 9781394193196 (ePDF), 9781394193189 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per- copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750- 8400, fax (978) 750- 4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748- 6011, fax (201) 748- 6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993 or fax (317) 572- 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2023948608

Cover image: © CSA- Printstock/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Dedicated to my amazing parents and brother,

whose continuous support and patience help me in

tackling such a big project as writing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software project
manager and software architect at Nikon Metrology (industry.nikon.com), a division of Nikon
and a leading provider of precision optical instruments, X- ray machines, and metrology solutions for
X- ray, CT, and 3- D geometric inspection.

His main expertise is C++. He has experience with developing C++ programs running 24/7 on Win-
dows and Linux platforms: for example, KNX/EIB home automation software. In addition to C++,
Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (becpp.org), co- author of C++ Standard
Library Quick Reference 1st and 2nd editions (Apress 2016 and 2019), a technical editor for numer-
ous books for several publishers, and a regular speaker at the CppCon C++ conference (cppcon.org).
He maintains a blog at www.nuonsoft.com/blog and is passionate about traveling and gastronomic
restaurants.

ABOUT THE TECHNICAL EDITORS

BRADLEY JONES has programmed in a variety of languages and tools ranging from C to Unity on
platforms ranging from Windows to mobile and including the web as well as a little bit of virtual
reality and embedded devices just for fun. In addition to programming, he has authored books on C,
C++, C#, Windows, the web, and many more technical topics and a few nontechnical topics. Bradley
is the owner of Lots of Software, LLC, and has been recognized in the industry as a community influ-
encer as well as has been recognized as a Microsoft MVP, a CODiE Judge, an international technol-
ogy speaker, a bestselling technical author, and more.

ARTHUR O’DWYER is a professional C++ trainer, software engineer, author, and WG21 committee
member. He authored Mastering the C++17 STL (Packt Publishing, 2017), founded CppCon’s “Back
to Basics” track (2019), implemented libc++’s <memory_resource> header (2022), and is responsible
for the simplified “implicit move” semantics in C++20 and C++23. He and his wife live in New York.

http://industry.nikon.com
http://becpp.org
http://cppcon.org
http://www.nuonsoft.com/blog

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS editorial and production teams for their support. A special thank-
you to Jim Minatel, executive editor at Wiley, for giving me a chance to write this sixth edition; Pete
Gaughan, senior managing editor; Ashirvad Moses Thyagarajan, managing editor; Kathryn Hogan,
PhD, project manager; Archana Pragash, content refinement specialist; and Kim Wimpsett, copyeditor.

A special thank you to technical editors Bradley Jones and Arthur O’Dwyer for checking the technical
accuracy of the book. Their feedback and numerous contributions have strengthened this book and
are greatly appreciated.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for supporting me over all these years and across numerous editions
with this approach to professional C++ software development.

— Marc Gregoire

CONTENTS

INTRODUCTION xli

PART I: INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY 3

C++ Crash Course 4
The Obligatory “Hello, World” Program 4

Comments 5
Importing Modules 5
How the Compiler Processes Your Source Code 6
Preprocessor Directives 6
The main() Function 7
Printing Text 7
I/O Streams 7
Returning from a Function 9

Namespaces 9
Nested Namespace 11
Namespace Alias 11

Literals 11
Variables 12

Numerical Limits 15
Zero Initialization 15
Casting 16
Floating-Point Numbers 16

Operators 18
Enumerations 21

Old-Style Enumerations 22
Structs 23
Conditional Statements 24

if/else Statements 24
switch Statements 25

The Conditional Operator 27
Logical Evaluation Operators 27
Three-Way Comparisons 29
Functions 30

Contents

Function Return Type Deduction 31
Current Function’s Name 32
Function Overloading 32

Attributes 32
[[nodiscard]] 33
[[maybe_unused]] 33
[[noreturn]] 34
[[deprecated]] 34
[[likely]] and [[unlikely]] 35
[[assume]] 35

C-Style Arrays 36
std::array 37
std::vector 38
std::pair 39
std::optional 40
Structured Bindings 41
Loops 41

The while Loop 41
The do/while Loop 42
The for Loop 42
The Range-Based for Loop 42

Initializer Lists 43
Strings in C++ 43
C++ as an Object-Oriented Language 44

Defining Classes 44
Using Classes 47

Scope Resolution 47
Uniform Initialization 48

Designated Initializers 51
Pointers and Dynamic Memory 52

The Stack and the Free Store 52
Working with Pointers 53
Dynamically Allocated Arrays 54
Null Pointer Constant 55

The Use of const 56
const as a Qualifier for a Type 56
const Member Functions 58

References 59
Reference Variables 59
Reference Data Members 62
Reference Parameters 62

viii

ix

Contents

Reference Return Values 65
Deciding Between References and Pointers 65

const_cast() 69
Exceptions 70
Type Aliases 71
typedefs 72
Type Inference 72

The auto Keyword 72
The decltype Keyword 75

The Standard Library 75
Your First Bigger C++ Program 76

An Employee Records System 76
The Employee Class 76

Employee.cppm 76
Employee.cpp 78
EmployeeTest.cpp 79

The Database Class 80
Database.cppm 80
Database.cpp 81
DatabaseTest.cpp 82

The User Interface 82
Evaluating the Program 85

summary 85
exercises 85

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS 87

Dynamic strings 88
C- Style Strings 88
String Literals 90

Raw String Literals 90
The C++ std::string Class 92

What Is Wrong with C- Style Strings? 92
Using the std::string Class 92
std::string Literals 95
CTAD with std::vector and Strings 96

Numeric Conversions 96
High- Level Numeric Conversions 96
Low- Level Numeric Conversions 98

The std::string_view Class 100
std::string_view and Temporary Strings 102
std::string_view Literals 102

x

Contents

Nonstandard Strings 103
Formatting and Printing strings 103

Format Strings 104
Argument Indices 105
Printing to Different Destinations 106
Compile- Time Verification of Format Strings 106

Non- Compile- Time Constant Format Strings 106
Handling Errors in Non- Compile- Time Constant Format Strings 107

Format Specifiers 107
width 108
[fill]align 108
sign 109
109
type 109
precision 110
0 111
L 111

Formatting Escaped Characters and Strings 111
Formatting Ranges 112
Support for Custom Types 114

summary 117
exercises 117

CHAPTER 3: CODING WITH STYLE 119

the Importance of Looking Good 119
Thinking Ahead 120
Elements of Good Style 120

Documenting Your Code 120
Reasons to Write Comments 120

Commenting to Explain Usage 120
Commenting to Explain Complicated Code 122
Commenting to Convey Meta-information 124
Copyright Comment 125

Commenting Styles 125
Commenting Every Line 125
Prefix Comments 126
Fixed-Format Comments 127
Ad Hoc Comments 129
Self-Documenting Code 129

Decomposition 129
Decomposition through Refactoring 130

xi

Contents

Decomposition by Design 131
Decomposition in This Book 131

naming 132
Choosing a Good Name 132
Naming Conventions 133

Counters 133
Prefixes 133
Hungarian Notation 134
Getters and Setters 134
Capitalization 134
Namespaced Constants 134

Using Language Features with style 135
Use Constants 135
Use References Instead of Pointers 136
Use Custom Exceptions 136

Formatting 137
The Curly Brace Alignment Debate 137
Coming to Blows over Spaces and Parentheses 138
Spaces, Tabs, and Line Breaks 139

stylistic Challenges 139
summary 140
exercises 140

PART II: PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS 145

What is Programming Design? 146
the Importance of Programming Design 147
Designing For C++ 149
two Rules for Your own C++ Designs 150

Abstraction 150
Benefiting from Abstraction 150
Incorporating Abstraction in Your Design 151

Reuse 152
Writing Reusable Code 153
Reusing Designs 153

Reusing existing Code 154
A Note on Terminology 155
Deciding Whether to Reuse Code or Write It Yourself 156

Advantages to Reusing Code 156

xii

Contents

Disadvantages to Reusing Code 157
Putting It Together to Make a Decision 158

Guidelines for Choosing a Library to Reuse 158
Understand the Capabilities and Limitations 158
Understand the Learning Cost 159
Understand the Performance 159
Understand Platform Limitations 162
Understand Licensing 162
Understand Support and Know Where to Find Help 162
Prototype 163
Open- Source Libraries 163
The C++ Standard Library 165

Designing a Chess Program 166
Requirements 166
Design Steps 167

Divide the Program into Subsystems 167
Choose Threading Models 169
Specify Class Hierarchies for Each Subsystem 170
Specify Classes, Data Structures, Algorithms, and Patterns
for Each Subsystem 170
Specify Error Handling for Each Subsystem 173

summary 174
exercises 175

CHAPTER 5: DESIGNING WITH CLASSES 177

Am I thinking Procedurally? 178
the object- oriented Philosophy 178

Classes 178
Components 179
Properties 179
Behaviors 180
Bringing It All Together 180

Living In a World of Classes 181
Over- Classification 182
Overly General Classes 182

Class Relationships 183
The Has- a Relationship 183
The Is- a Relationship (Inheritance) 184

Inheritance Techniques 185
Polymorphism 186

The Fine Line Between Has- a and Is- a 186

xiii

Contents

The Not- a Relationship 190
Hierarchies 191
Multiple Inheritance 192
Mixin Classes 193

summary 194
exercises 194

CHAPTER 6: DESIGNING FOR REUSE 197

the Reuse Philosophy 198
How to Design Reusable Code 198

Use Abstraction 199
Structure Your Code for Optimal Reuse 200

Avoid Combining Unrelated or Logically Separate Concepts 201
Use Templates for Generic Data Structures and Algorithms 203
Provide Appropriate Checks and Safeguards 205
Design for Extensibility 206

Design Usable Interfaces 208
Consider the Audience 208
Consider the Purpose 209
Design Interfaces That Are Easy to Use 210
Design General- Purpose Interfaces 214
Reconciling Generality and Ease of Use 215

Designing a Successful Abstraction 216
The SOLID Principles 216

summary 217
exercises 217

PART III: C++ CODING THE PROFESSIONAL WAY

CHAPTER 7: MEMORY MANAGEMENT 221

Working with Dynamic Memory 222
How to Picture Memory 222
Allocation and Deallocation 223

Using new and delete 223
What About My Good Friend malloc? 224
When Memory Allocation Fails 225

Arrays 225
Arrays of Primitive Types 226
Arrays of Objects 228

xiv

Contents

Deleting Arrays 228
Multidimensional Arrays 229

Working with Pointers 233
A Mental Model for Pointers 233
Casting with Pointers 234

Array- Pointer Duality 234
Arrays Decay to Pointers 234
Not All Pointers Are Arrays! 236

Low- Level Memory operations 236
Pointer Arithmetic 236
Custom Memory Management 237
Garbage Collection 238
Object Pools 238

Common Memory Pitfalls 239
Underallocating Data Buffers and Out- of- Bounds Memory Access 239
Memory Leaks 240

Finding and Fixing Memory Leaks in Windows with Visual C++ 241
Finding and Fixing Memory Leaks in Linux with Valgrind 243

Double- Deletion and Invalid Pointers 243
smart Pointers 244

unique_ptr 245
Creating unique_ptrs 245
Using unique_ptrs 247
unique_ptr and C- Style Arrays 248
Custom Deleters 248

shared_ptr 249
Creating and Using shared_ptrs 249
The Need for Reference Counting 250
Casting a shared_ptr 251
Aliasing 252

weak_ptr 252
Passing to Functions 253
Returning from Functions 253
enable_shared_from_this 254
Interoperability of Smart Pointers with C- Style Functions 255
The Old and Removed auto_ptr 255

summary 256
exercises 256

xv

Contents

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES AND OBJECTS 259

Introducing the spreadsheet example 260
Writing Classes 260

Class Definitions 260
Class Members 261
Access Control 261
Order of Declarations 262
In- Class Member Initializers 263

Defining Member Functions 263
Accessing Data Members 264
Calling Other Member Functions 264

Using Objects 265
Objects on the Stack 266
Objects on the Free Store 266

The this Pointer 267
Explicit Object Parameter 268

Understanding object Life Cycles 269
Object Creation 269

Writing Constructors 270
Using Constructors 270
Providing Multiple Constructors 271
Default Constructors 272
Constructor Initializers aka Ctor- Initializers 276
Copy Constructors 279
Initializer- List Constructors 281
Delegating Constructors 283
Converting Constructors and Explicit Constructors 284
Summary of Compiler- Generated Constructors 285

Object Destruction 286
Assigning to Objects 288

Declaring an Assignment Operator 288
Defining an Assignment Operator 289
Explicitly Defaulted and Deleted Assignment Operator 290

Compiler- Generated Copy Constructor and Copy Assignment Operator 291
Distinguishing Copying from Assignment 291

Objects as Return Values 291
Copy Constructors and Object Members 292

summary 293
exercises 293

xvi

Contents

CHAPTER 9: MASTERING CLASSES AND OBJECTS 295

Friends 296
Dynamic Memory Allocation in objects 297

The Spreadsheet Class 297
Freeing Memory with Destructors 300
Handling Copying and Assignment 301

The Spreadsheet Copy Constructor 303
The Spreadsheet Assignment Operator 303
Disallowing Assignment and Pass- by- Value 306

Handling Moving with Move Semantics 307
Rvalue References 307
Decay Copy 310
Implementing Move Semantics 310
Testing the Spreadsheet Move Operations 314
Implementing a Swap Function with Move Semantics 316
Using std::move() in Return Statements 317
Optimal Way to Pass Arguments to Functions 318

Rule of Zero 319
More About Member Functions 320

static Member Functions 320
const Member Functions 321

mutable Data Members 322
Member Function Overloading 323

Overloading Based on const 323
Explicitly Deleting Overloads 325
Ref- Qualified Member Functions 325

Inline Member Functions 327
Default Arguments 329

Constexpr and Consteval 330
The constexpr Keyword 330
The consteval Keyword 331
constexpr and consteval Classes 332

Different Kinds of Data Members 333
static Data Members 333

Inline Variables 334
Accessing static Data Members from within Class
Member Functions 334

constexpr static Data Members 335
Accessing static Data Members from Outside
Class Member Functions 336

Reference Data Members 336

xvii

Contents

nested Classes 338
enumerations Inside Classes 339
operator overloading 339

Example: Implementing Addition for SpreadsheetCells 340
First Attempt: The add Member Function 340
Second Attempt: Overloaded operator+ as a Member Function 341
Third Attempt: Global operator+ 342

Overloading Arithmetic Operators 343
Overloading the Arithmetic Shorthand Operators 344

Overloading Comparison Operators 345
Overloading Comparison Operators Before C++20 345
Overloading Comparison Operators Since C++20 347
Compiler- Generated Comparison Operators 348

Building stable Interfaces 350
Using Interface and Implementation Classes 350

summary 354
exercises 354

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES 357

Building Classes with Inheritance 358
Extending Classes 358

A Client’s View of Inheritance 359
A Derived Class’s View of Inheritance 360
Preventing Inheritance 362

Overriding Member Functions 362
The virtual Keyword 362
Syntax for Overriding a Member Function 363
A Client’s View of Overridden Member Functions 363
The override Keyword 365
The Truth about virtual 366
Preventing Overriding 370

Inheritance For Reuse 370
The WeatherPrediction Class 370
Adding Functionality in a Derived Class 371
Replacing Functionality in a Derived Class 373

Respect Your Parents 373
Parent Constructors 373
Parent Destructors 375
virtual Member Function Calls within Constructors and Destructor 376
Referring to Parent Names 377
Casting Up and Down 379

xviii

Contents

Inheritance for Polymorphism 380
Return of the Spreadsheet 380
Designing the Polymorphic Spreadsheet Cell 381
The SpreadsheetCell Base Class 382

A First Attempt 382
Pure virtual Member Functions and Abstract Base Classes 382

The Individual Derived Classes 383
StringSpreadsheetCell Class Definition 383
StringSpreadsheetCell Implementation 384
DoubleSpreadsheetCell Class Definition and Implementation 384

Leveraging Polymorphism 385
Future Considerations 386
Providing Implementations for Pure virtual Member Functions 388

Multiple Inheritance 388
Inheriting from Multiple Classes 389
Naming Collisions and Ambiguous Base Classes 390

Name Ambiguity 390
Ambiguous Base Classes 391
Uses for Multiple Inheritance 392

Interesting and obscure Inheritance Issues 392
Changing the Overridden Member Function’s Return Type 393
Adding Overloads of virtual Base Class Member
Functions to Derived Classes 396
Inherited Constructors 396

Hiding of Inherited Constructors 397
Inherited Constructors and Multiple Inheritance 398
Initialization of Data Members 399

Special Cases in Overriding Member Functions 400
The Base Class Member Function Is static 400
The Base Class Member Function Is Overloaded 401
The Base Class Member Function Is private 403
The Base Class Member Function Has Default Arguments 404
The Base Class Member Function Has a Different
Access Specification 405

Copy Constructors and Assignment Operators in Derived Classes 407
Run- Time Type Facilities 408
Non- public Inheritance 410
Virtual Base Classes 411

Casts 414
static_cast() 414

xix

Contents

reinterpret_cast() 415
dynamic_cast() 416
std::bit_cast() 417
Summary of Casts 418

summary 418
exercises 419

CHAPTER 11: MODULES, HEADER FILES, AND
MISCELLANEOUS TOPICS 421

Modules 422
Unmodularizing Code 423
Standard Named Modules 423
Module Interface Files 423
Module Implementation Files 425
Splitting Interface from Implementation 426
Visibility vs. Reachability 427
Submodules 428
Module Partitions 429

Implementation Partitions 431
Private Module Fragment 432
Header Units 433
Importable Standard Library Headers 434

Preprocessor Directives 436
Preprocessor Macros 437

Linkage 438
Internal Linkage 439
The extern Keyword 440

Header Files 441
One Definition Rule (ODR) 441
Duplicate Definitions 442
Circular Dependencies 442
Querying Existence of Headers 443
Module Import Declarations 443

Feature-test Macros for Core Language Features 444
the static Keyword 445

static Data Members and Member Functions 445
static Variables in Functions 445
Order of Initialization of Nonlocal Variables 446
Order of Destruction of Nonlocal Variables 446

xx

Contents

C- style Variable- Length Argument Lists 447
Accessing the Arguments 448
Why You Shouldn’t Use C- Style Variable- Length Argument Lists 448

summary 449
exercises 449

CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES 451

overview of templates 452
Class templates 453

Writing a Class Template 453
Coding Without Templates 453
A Template Grid Class 456
Using the Grid Template 460

How the Compiler Processes Templates 461
Selective/Implicit Instantiation 462
Explicit Instantiation 462
Template Requirements on Types 462

Distributing Template Code Between Files 463
Member Function Definitions in Same File as Class
Template Definition 463
Member Function Definitions in Separate File 463

Template Parameters 464
Non- type Template Parameters 464
Default Values for Template Parameters 466
Class Template Argument Deduction 467

Member Function Templates 468
Member Function Templates with Non- type Template
Parameters 471
Using Member Function Templates with Explicit
Object Parameters to Avoid Code Duplication 473

Class Template Specialization 474
Deriving from Class Templates 477
Inheritance vs. Specialization 478
Alias Templates 479

Function templates 479
Function Overloads vs. Function Template 481
Function Template Overloading 481
Function Templates as Friends of Class Templates 482
More on Template Type Parameter Deduction 484
Return Type of Function Templates 484
Abbreviated Function Template Syntax 486

xxi

Contents

Variable templates 487
Concepts 487

Syntax 488
Constraints Expression 488

Requires Expressions 489
Combining Concept Expressions 491

Predefined Standard Concepts 491
Type- Constrained auto 492
Type Constraints and Function Templates 493

Constraint Subsumption 495
Type Constraints and Class Templates 495
Type Constraints and Class Member Functions 496
Constraint- Based Class Template Specialization and
Function Template Overloading 496
Best Practices 497

summary 498
exercises 498

CHAPTER 13: DEMYSTIFYING C++ I/O 501

Using streams 502
What Is a Stream, Anyway? 502
Stream Sources and Destinations 504
Output with Streams 504

Output Basics 504
Member Functions of Output Streams 505
Handling Output Errors 506
Output Manipulators 508

Input with Streams 510
Input Basics 510
Handling Input Errors 511
Input Member Functions 512
Input Manipulators 516

Input and Output with Objects 517
Custom Manipulators 519

string streams 519
span-Based streams 521
File streams 522

Text Mode vs. Binary Mode 523
Jumping Around with seek() and tell() 523
Linking Streams Together 526
Read an Entire File 526

xxii

Contents

Bidirectional I/o 527
Filesystem support Library 528

Path 528
Directory Entry 530
Helper Functions 530
Directory Iteration 530

summary 531
exercises 532

CHAPTER 14: HANDLING ERRORS 533

errors and exceptions 534
What Are Exceptions, Anyway? 534
Why Exceptions in C++ Are a Good Thing 535
Recommendation 536

exception Mechanics 536
Throwing and Catching Exceptions 537
Exception Types 540
Catching Exception Objects as Reference-to-const 541
Throwing and Catching Multiple Exceptions 541

Matching and const 543
Matching Any Exception 543

Uncaught Exceptions 544
noexcept Specifier 546
noexcept(expression) Specifier 546
noexcept(expression) Operator 546
Throw Lists 547

exceptions and Polymorphism 547
The Standard Exception Hierarchy 547
Catching Exceptions in a Class Hierarchy 549
Writing Your Own Exception Classes 550
Nested Exceptions 553

Rethrowing exceptions 555
stack Unwinding and Cleanup 556

Use Smart Pointers 558
Catch, Cleanup, and Rethrow 558

source Location 559
Source Location for Logging 560
Automatically Embed a Source Location in Custom Exceptions 560

stack trace 561

xxiii

Contents

The Stack Trace Library 561
Automatically Embed a Stack Trace in Custom Exceptions 563

Common error-Handling Issues 564
Memory Allocation Errors 565

Non-throwing new 565
Customizing Memory Allocation Failure Behavior 566

Errors in Constructors 567
Function-Try-Blocks for Constructors 569
Errors in Destructors 572

exception safety Guarantees 573
summary 573
exercises 573

CHAPTER 15: OVERLOADING C++ OPERATORS 577

overview of operator overloading 578
Why Overload Operators? 578
Limitations to Operator Overloading 578
Choices in Operator Overloading 579

Member Function or Global Function 579
Choosing Argument Types 580
Choosing Return Types 581
Choosing Behavior 581

Operators You Shouldn’t Overload 581
Summary of Overloadable Operators 582
Rvalue References 586
Precedence and Associativity 587
Relational Operators 588
Alternative Notation 589

overloading the Arithmetic operators 589
Overloading Unary Minus and Unary Plus 589
Overloading Increment and Decrement 590

overloading the Bitwise and Binary Logical operators 591
overloading the Insertion and extraction operators 591
overloading the subscripting operator 593

Providing Read- Only Access with operator[] 596
Multidimensional Subscripting Operator 598
Non- integral Array Indices 599
static Subscripting Operator 599

overloading the Function Call operator 600
static Function Call Operator 601

xxiv

Contents

overloading the Dereferencing operators 602
Implementing operator* 603
Implementing operator–> 604
What in the World Are operator.* and operator–>*? 604

Writing Conversion operators 605
Operator auto 606
Solving Ambiguity Problems with Explicit Conversion Operators 606
Conversions for Boolean Expressions 607

overloading the Memory Allocation and Deallocation operators 609
How new and delete Really Work 609

The New- Expression and operator new 609
The Delete- Expression and operator delete 610

Overloading operator new and operator delete 610
Explicitly Deleting or Defaulting operator new and operator delete 613
Overloading operator new and operator delete with Extra Parameters 613
Overloading operator delete with Size of Memory as Parameter 614

overloading User- Defined Literal operators 615
Standard Library Literals 615
User- Defined Literals 616

Cooked- Mode Literal Operator 616
Raw- Mode Literal Operator 617

summary 618
exercises 618

CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY 619

Coding Principles 620
Use of Templates 621
Use of Operator Overloading 621

overview of the C++ standard Library 621
Strings 621
Regular Expressions 622
I/O Streams 622
Smart Pointers 622
Exceptions 623
Standard Integer Types 623
Numerics Library 623
Integer Comparisons 624
Bit Manipulation 624
Time and Date Utilities 625
Random Numbers 625

xxv

Contents

Initializer Lists 626
Pair and Tuple 626
Vocabulary Types 626
Function Objects 627
Filesystem 627
Multithreading 627
Type Traits 627
Standard Library Feature- Test Macros 627
<version> 629
Source Location 629
Stack Trace 629
Containers 629

Sequential Containers 630
Sequential Views 632
Container Adapters 632
Ordered Associative Containers 634
Unordered Associative Containers/Hash Tables 635
Flat Associative Container Adapters 635
bitset 636
Summary of Standard Library Containers 636

Algorithms 639
Non- modifying Sequence Algorithms 640
Modifying Sequence Algorithms 642
Operational Algorithms 643
Swap Algorithms 644
Partitioning Algorithms 644
Sorting Algorithms 645
Binary Search Algorithms 645
Set Algorithms on Sorted Sequences 645
Other Algorithms on Sorted Sequences 646
Heap Algorithms 646
Minimum/Maximum Algorithms 646
Numerical Processing Algorithms 647
Permutation Algorithms 648
Choosing an Algorithm 648

Ranges Library 649
What’s Missing from the Standard Library 650

summary 650
exercises 650

xxvi

Contents

CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY 653

Iterators 654
Getting Iterators for Containers 656
Iterator Traits 658
Examples 659
Function Dispatching Using Iterator Traits 660

stream Iterators 661
Output Stream Iterator: ostream_iterator 662
Input Stream Iterator: istream_iterator 663
Input Stream Iterator: istreambuf_iterator 663

Iterator Adapters 663
Insert Iterators 664
Reverse Iterators 665
Move Iterators 666

Ranges 668
Constrained Algorithms 669

Projection 670
Views 671

Modifying Elements Through a View 677
Mapping Elements 677

Range Factories 678
Input Streams as Views 679

Converting a Range into a Container 680
summary 681
exercises 681

CHAPTER 18: STANDARD LIBRARY CONTAINERS 683

Containers overview 684
Requirements on Elements 685
Exceptions and Error Checking 687

sequential Containers 687
vector 687

vector Overview 687
vector Details 690
Move Semantics 703
vector Example: A Round-Robin Class 704

The vector<bool> Specialization 709
deque 709
list 710

xxvii

Contents

Accessing Elements 710
Iterators 711
Adding and Removing Elements 711
list Size 711
Special list Operations 711
list Example: Determining Enrollment 713

forward_list 714
array 717

sequential Views 718
span 718
mdspan 720

Container Adapters 722
queue 722

queue Operations 722
queue Example: A Network Packet Buffer 723

priority_queue 725
priority_queue Operations 725
priority_queue Example: An Error Correlator 726

stack 727
stack Operations 728
stack Example: Revised Error Correlator 728

Associative Containers 728
Ordered Associative Containers 728

The pair Utility Class 729
map 729
multimap 738
set 742
multiset 744

Unordered Associative Containers Or Hash Tables 744
Hash Functions 744
unordered_map 746
unordered_multimap 750
unordered_set/unordered_multiset 751

Flat Set and Flat Map Associative Container Adapters 751
Performance of Associative Containers 752

other Containers 752
Standard C-Style Arrays 752
Strings 753
Streams 754
bitset 754

bitset Basics 755

xxviii

Contents

Bitwise Operators 755
bitset Example: Representing Cable Channels 756

summary 759
exercises 759

CHAPTER 19: FUNCTION POINTERS, FUNCTION
OBJECTS, AND LAMBDA EXPRESSIONS 761

Function Pointers 762
findMatches() Using Function Pointers 762
findMatches() As a Function Template 764
Windows DLLs and Function Pointers 765

Pointers to Member Functions (And Data Members) 765
Function objects 767

Writing Your First Function Object 767
Function Objects in the Standard Library 767

Arithmetic Function Objects 768
Comparison Function Objects 769
Logical Function Objects 771
Bitwise Function Objects 771
Adapter Function Objects 771

Polymorphic Function Wrappers 775
std::function 775
std::move_only_function 776

Lambda expressions 777
Syntax 777
Lambda Expressions as Parameters 783
Generic Lambda Expressions 783
Lambda Capture Expressions 784
Templated Lambda Expressions 785
Lambda Expressions as Return Type 785
Lambda Expressions in Unevaluated Contexts 786
Default Construction, Copying, and Assigning 786
Recursive Lambda Expressions 787

Invokers 787
summary 788
exercises 788

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS 791

overview of Algorithms 792
The find and find_if Algorithms 793
The accumulate Algorithm 795

xxix

Contents

Move Semantics with Algorithms 796
Algorithm Callbacks 796

Algorithm Details 797
Non- modifying Sequence Algorithms 798

Search Algorithms 798
Specialized Searchers 799
Comparison Algorithms 800
Counting Algorithms 802

Modifying Sequence Algorithms 803
generate 804
transform 804
copy 805
move 806
replace 808
erase 808
remove 809
unique 810
shuffle 811
sample 811
reverse 812
Shifting Elements 812

Operational Algorithms 813
for_each 813
for_each_n 814

Partition Algorithms 814
Sorting Algorithms 815
Binary Search Algorithms 817
Set Algorithms 818
Minimum/Maximum Algorithms 820
Parallel Algorithms 822
Numerical Processing Algorithms 823

iota 824
Reduce Algorithms 824
Scan Algorithms 825

Constrained Algorithms 826
Constrained find 826
Constrained generate 826
Constrained for_each 827
Constrained- Only Algorithms 827

summary 828
exercises 828

xxx

Contents

CHAPTER 21: STRING LOCALIZATION AND
REGULAR EXPRESSIONS 831

Localization 832
Wide Characters 832
Non-Western Character Sets 833
Localizing String Literals 835
Locales and Facets 836

Locales 836
Global Locale 837
Using Locales 837
Character Classification 839
Character Conversion 839
Using Facets 839
Conversions 840

Regular expressions 841
ECMAScript Syntax 842

Anchor 842
Wildcard 843
Alternation 843
Grouping 843
Quantifier 843
Precedence 844
Character Set Matches 844
Word Boundary 846
Back Reference 847
Lookahead 847
Regular Expressions and Raw String Literals 848
Common Regular Expressions 848

The regex Library 848
regex_match() 849

regex_match() Examples 850
regex_search() 852

regex_search() Examples 852
regex_iterator 853

regex_iterator Examples 853
regex_token_iterator 854

regex_token_iterator Examples 855
regex_replace() 857

regex_replace() Examples 857
summary 859
exercises 859

xxxi

Contents

CHAPTER 22: DATE AND TIME UTILITIES 861

Compile-time Rational numbers 862
Duration 864

Examples and Converting Durations 865
Predefined Durations 867
Standard Literals 868
hh_mm_ss 868

Clock 868
Printing Current Time 870
Execution Timing 870

time Point 871
Date 873

Creating Dates 873
Printing Dates 875
Arithmetic with Dates 876

time Zone 877
summary 878
exercises 878

CHAPTER 23: RANDOM NUMBER FACILITIES 879

C-style Random number Generation 880
Random number engines 881
Random number engine Adapters 882
Predefined engines and engine Adapters 883
Generating Random numbers 884
Random number Distributions 885
summary 889
exercises 889

CHAPTER 24: ADDITIONAL VOCABULARY TYPES 891

Variant 892
Any 894
tuple 895

Decompose Tuples 897
Structured Bindings 897
tie 898

Concatenation 898
Comparisons 898
make_from_tuple 899
apply 900

Contents

xxxii

optional: Monadic operations 900
expected 901

Exceptions, Error Return Codes, and expected 904
summary 904
exercises 905

PART IV: MASTERING ADVANCED FEATURES OF C++

CHAPTER 25: CUSTOMIZING AND EXTENDING THE
STANDARD LIBRARY 909

Allocators 910
extending the standard Library 911

Why Extend the Standard Library? 912
Writing a Standard Library Algorithm 912

find_all 912
Modernized find_all 914

Writing a Standard Library Container 915
A Basic Directed Graph 915
Making directed_graph a Standard Library Container 925
Additional Standard Library–Like Functionality 939
Further Improvements 942
Other Container Types 942

summary 942
exercises 943

CHAPTER 26: ADVANCED TEMPLATES 945

More About template Parameters 946
More About Template Type Parameters 946
Introducing Template Template Parameters 949
More About Non- type Template Parameters 951

Class template Partial specialization 952
emulating Function Partial specialization with overloading 955
template Recursion 957

An N- Dimensional Grid: First Attempt 957
A Real N- Dimensional Grid 958

Variadic templates 960
Type- Safe Variable- Length Argument Lists 961

constexpr if 963
Variable Number of Mixin Classes 963
Fold Expressions 964

xxxiii

Contents

Metaprogramming 966
Factorial at Compile Time 967
Loop Unrolling 968
Printing Tuples 968

constexpr if 970
Using a Compile- Time Integer Sequence with Folding 971

Type Traits 972
Using Type Categories 973
Using Type Relationships 975
Using the conditional Type Trait 976
Using Type Modification Type Traits 978
Using enable_if 978
Using constexpr if to Simplify enable_if Constructs 981
Logical Operator Traits 982
Static Assertions 982

Metaprogramming Conclusion 983
summary 983
exercises 984

CHAPTER 27: MULTITHREADED PROGRAMMING WITH C++ 985

Introduction 986
Race Conditions 988
Tearing 989
Deadlocks 989
False Sharing 991

threads 991
Thread with Function Pointer 991
Thread with Function Object 993
Thread with Lambda 994
Thread with Member Function Pointer 994
Thread- Local Storage 995
Canceling Threads 996
Automatically Joining Threads 996

Cooperative Cancellation 996
Retrieving Results from Threads 998
Copying and Rethrowing Exceptions 998

Atomic operations Library 1001
Atomic Operations 1002
Atomic Smart Pointers 1004
Atomic References 1004
Using Atomic Types 1004

xxxiv

Contents

Waiting on Atomic Variables 1006
Mutual exclusion 1007

Mutex Classes 1008
Spinlock 1008
Non- timed Mutex Classes 1009
Timed Mutex Classes 1010

Locks 1011
lock_guard 1011
unique_lock 1011
shared_lock 1012
Acquiring Multiple Locks at Once 1012
scoped_lock 1013

std::call_once 1014
Examples Using Mutexes 1015

Thread- Safe Writing to Streams 1015
Double- Checked Locking 1017

Condition Variables 1019
Spurious Wake- Ups 1020
Using Condition Variables 1020

Latches 1021
Barriers 1023
semaphores 1024
Futures 1025

std::promise and std::future 1026
std::packaged_task 1027
std::async 1028
Exception Handling 1029
std::shared_future 1029

example: Multithreaded Logger Class 1030
thread Pools 1035
Coroutines 1036
threading Design and Best Practices 1038
summary 1039
exercises 1040

PART V: C++ SOFTWARE ENGINEERING

CHAPTER 28: MAXIMIZING SOFTWARE ENGINEERING
METHODS 1043

the need for Process 1044
software Life Cycle Models 1045

xxxv

Contents

The Waterfall Model 1045
Benefits of the Waterfall Model 1046
Drawbacks of the Waterfall Model 1046

Sashimi Model 1047
Spiral- like Models 1047

Benefits of a Spiral- like Model 1048
Drawbacks of a Spiral- like Model 1049

Agile 1050
software engineering Methodologies 1050

Scrum 1050
Roles 1051
The Process 1051
Benefits of Scrum 1053
Drawbacks of Scrum 1053

The Unified Process 1053
The Rational Unified Process 1054

RUP as a Product 1055
RUP as a Process 1055
RUP in Practice 1055

Extreme Programming 1056
XP in Theory 1056
XP in Practice 1060

Software Triage 1060
Building Your own Process and Methodology 1061

Be Open to New Ideas 1061
Bring New Ideas to the Table 1061
Recognize What Works and What Doesn’t Work 1061
Don’t Be a Renegade 1061

Version Control 1062
summary 1064
exercises 1064

CHAPTER 29: WRITING EFFICIENT C++ 1065

overview of Performance and efficiency 1066
Two Approaches to Efficiency 1066
Two Kinds of Programs 1066
Is C++ an Inefficient Language? 1066

Language- Level efficiency 1067
Handle Objects Efficiently 1068

Pass- by- Value or Pass- by- Reference 1068
Return- by- Value or Return- by- Reference 1070

Contents

xxxvi

Catch Exceptions by Reference 1070
Use Move Semantics 1070
Avoid Creating Temporary Objects 1070

Pre- allocate Memory 1071
Use Inline Functions 1071
Mark Unreachable Code 1072

Design- Level efficiency 1073
Cache Where Necessary 1073
Use Object Pools 1074

An Object Pool Implementation 1074
Using the Object Pool 1078

Profiling 1079
Profiling Example with gprof 1080

First Design Attempt 1080
Profiling the First Design Attempt 1083
Second Design Attempt 1085
Profiling the Second Design Attempt 1087

Profiling Example with Visual C++ 2022 1088
summary 1090
exercises 1090

CHAPTER 30: BECOMING ADEPT AT TESTING 1093

Quality Control 1094
Whose Responsibility Is Testing? 1094
The Life Cycle of a Bug 1094
Bug- Tracking Tools 1095

Unit testing 1097
Approaches to Unit Testing 1097
The Unit Testing Process 1098

Define the Granularity of Your Tests 1098
Brainstorm the Individual Tests 1100
Create Sample Data and Results 1101
Write the Tests 1101
Run the Tests 1102

Unit Testing in Action 1102
Introducing the Microsoft Visual C++ Testing Framework 1103
Writing the First Test 1105
Building and Running Tests 1105
Negative Tests 1106
Adding the Real Tests 1107

xxxvii

Contents

Debugging Tests 1109
Basking in the Glorious Light of Unit Test Results 1110

Fuzz testing 1110
Higher- Level testing 1110

Integration Tests 1110
Sample Integration Tests 1111
Integration Testing Techniques 1112

System Tests 1112
Regression Tests 1112

tips For successful testing 1113
summary 1114
exercises 1114

CHAPTER 31: CONQUERING DEBUGGING 1117

the Fundamental Law of Debugging 1118
Bug taxonomies 1118
Avoid Bugs 1118
Plan For Bugs 1119

Error Logging 1119
Debug Traces 1121

Debug Mode 1122
Ring Buffers 1126

Assertions 1129
Crash Dumps 1131

Debugging techniques 1131
Reproducing Bugs 1132
Debugging Reproducible Bugs 1133
Debugging Nonreproducible Bugs 1133
Debugging Regressions 1134
Debugging Memory Problems 1134

Categories of Memory Errors 1135
Tips for Debugging Memory Errors 1137

Debugging Multithreaded Programs 1139
Debugging Example: Article Citations 1140

Buggy Implementation of an ArticleCitations Class 1140
Testing the ArticleCitations Class 1143

Lessons from the ArticleCitations Example 1151
summary 1152
exercises 1152

xxxviii

Contents

CHAPTER 32: INCORPORATING DESIGN TECHNIQUES
AND FRAMEWORKS 1155

“I Can never Remember How to. . .” 1156
. . .Write a Class 1156
. . .Derive from an Existing Class 1158
. . .Write a Lambda Expression 1158
. . .Use the Copy- and- Swap Idiom 1159
. . .Throw and Catch Exceptions 1160
. . .Write a Class Template 1161
. . .Constrain Template Parameters 1162
. . .Write to a File 1162
. . .Read from a File 1162

there Must Be a Better Way 1163
Resource Acquisition Is Initialization 1163
Double Dispatch 1166

Attempt #1: Brute Force 1167
Attempt #2: Single Polymorphism with Overloading 1168
Attempt #3: Double Dispatch 1169

Mixin Classes 1171
Using Multiple Inheritance 1171
Using Class Templates 1173
Using CRTP 1174
Using CRTP and Deducing this 1175

object- oriented Frameworks 1175
Working with Frameworks 1176
The Model- View- Controller Paradigm 1176

summary 1177
exercises 1178

CHAPTER 33: APPLYING DESIGN PATTERNS 1179

the strategy Pattern 1180
Example: A Logging Mechanism 1180
Implementation of a Strategy- Based Logger 1181
Using the Strategy- Based Logger 1182

the Abstract Factory Pattern 1183
Example: A Car Factory Simulation 1183
Implementation of an Abstract Factory 1184
Using an Abstract Factory 1185

the Factory Method Pattern 1186
Example: A Second Car Factory Simulation 1186

xxxix

Contents

Implementation of a Factory Method 1187
Using a Factory Method 1189
Other Uses 1190

other Factory Patterns 1191
the Adapter Pattern 1192

Example: Adapting a Logger Class 1192
Implementation of an Adapter 1193
Using an Adapter 1194

the Proxy Pattern 1194
Example: Hiding Network Connectivity Issues 1194
Implementation of a Proxy 1195
Using a Proxy 1196

the Iterator Pattern 1196
the observer Pattern 1197

Example: Exposing Events from Subjects 1197
Implementation of an Observable 1197
Using an Observer 1199

the Decorator Pattern 1200
Example: Defining Styles in Web Pages 1200
Implementation of a Decorator 1201
Using a Decorator 1202

the Chain of Responsibility Pattern 1202
Example: Event Handling 1203
Implementation of a Chain of Responsibility 1203
Using a Chain of Responsibility 1204

the singleton Pattern 1205
Example: A Logging Mechanism 1206
Implementation of a Singleton 1206
Using a Singleton 1208

summary 1209
exercises 1209

CHAPTER 34: DEVELOPING CROSS- PLATFORM AND
CROSS- LANGUAGE APPLICATIONS 1211

Cross- Platform Development 1212
Architecture Issues 1212

Size of Integers 1212
Binary Compatibility 1213
Address Sizes 1214
Byte Order 1214

Implementation Issues 1216

xl

Contents

Compiler Quirks and Extensions 1216
Library Implementations 1216
Handling Different Implementations 1217

Platform- Specific Features 1217
Cross- Language Development 1219

Mixing C and C++ 1219
Shifting Paradigms 1219
Linking with C Code 1222
Calling C++ Code from C# 1224
Use C# Code from C++ and C++ from C# with C++/CLI 1226
Calling C++ Code from Java with JNI 1227
Calling Scripts from C++ Code 1229
Calling C++ Code from Scripts 1230

A Practical Example: Encrypting Passwords 1230
Calling Assembly Code from C++ 1232

summary 1233
exercises 1234

PART VI: APPENDICES

APPENDIX A: C++ INTERVIEWS 1239

APPENDIX B: ANNOTATED BIBLIOGRAPHY 1265

APPENDIX C: STANDARD LIBRARY HEADER FILES 1277

APPENDIX D: INTRODUCTION TO UML 1287

INDEX 1293

INTRODUCTION

The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the
successor of C with Classes. In 1985, the first edition of The C++ Programming Language book was
released. The first standardized version of C++ was released in 1998, called C++98. In 2003, C++03
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three- year cycle to release updated versions, giv-
ing us C++14, C++17, C++20, and now C++23. All in all, with the release of C++23 in 2023, C++ is
almost 40 years old and still going strong. In most rankings of programming languages in 2023, C++
is in the top four. It is being used on an extremely wide range of hardware, going from small devices
with embedded microprocessors all the way up to multi- rack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms,
performance- critical artificial intelligence (AI) and machine learning (ML) software, components for
self- driving cars, real- time 3- D graphics engines, low- level hardware drivers, entire operating systems,
software stacks for networking equipment, web browsers, and so on. The performance of C++ pro-
grams is hard to match with any other programming language, and as such, it is the de facto language
for writing fast, powerful, and enterprise- class programs. Big tech companies, such as Microsoft,
Facebook, Amazon, Google, and many more, use services written in C++ to run their infrastructure.
As popular as C++ has become, the language can be difficult to grasp in full. There are simple, but
powerful, techniques that professional C++ programmers use that don’t show up in traditional texts,
and there are useful parts of C++ that remain a mystery even to experienced C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real- world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and
providing an example. Professional C++ does not follow this pattern. Instead of giving you just the
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little- known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.

WHO THIS BOOK IS FOR

Even if you have used the language for years, you might still be unfamiliar with the more advanced
features of C++, or you might not be using the full capabilities of the language. Maybe you don’t yet
know all the new features introduced with the latest release, C++23. Perhaps you write competent
C++ code but would like to learn more about design and good programming style in C++. Or maybe
you’re relatively new to C++ but want to learn the “right” way to program from the start. This book
will meet those needs and bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becom-
ing a professional C++ programmer, it assumes that you have some knowledge about programming.

xlii

INTRODUCTION

Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you
have experience in another programming language such as C, Java, or C#, you should be able to pick
up most of what you need from Chapter 1.

In any case, you should have a solid foundation in programming fundamentals. You should know
about loops, functions, and variables. You should know how to structure a program, and you should
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don’t
need to know about object- oriented programming just yet— that is covered in Chapter 5, “Designing
with Classes.”

You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers,
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++23 features
throughout this sixth edition. These features are not just isolated to a few chapters or sections;
instead, examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also empha-
sizes programming methodologies, reusable design patterns, and good programming style. The Profes-
sional C++ methodology incorporates the entire software development process, from designing and
writing code to debugging and working in groups. This approach will enable you to master the C++
language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large- scale
software development.

Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main() function of the program or that all variables should be global— practices that are
generally not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object- oriented programming,
and the best ways to use existing libraries. They have also developed an arsenal of useful code and
reusable ideas.

By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features.
You will gain an appreciation for object- oriented design and acquire top- notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work.

xliii

INTRODUCTION

There are many good reasons to make the effort to be a professional C++ programmer as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will
help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can’t guarantee you a
promotion, it certainly won’t hurt.

HOW THIS BOOK IS STRUCTURED

This book is made up of five parts.

Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings,
because strings are used extensively in most examples throughout the book. The last chapter of Part I
explores how to write readable C++ code.

Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about
the importance of design, the object- oriented methodology, and the importance of code reuse.

Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects.
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem.

Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

Part V, “C++ Software Engineering,” focuses on writing enterprise- quality software. You’ll read about
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object- oriented
design patterns into your own code; and solutions for cross- language and cross- platform code.

The book concludes with a useful chapter- by- chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

xliv

INTRODUCTION

This book is not a reference of every single class, member function, and function available in C++.
The book C++17 Standard Library Quick Reference by Peter Van Weert and Marc Gregoire (Apress,
2019. ISBN: 978- 1- 4842- 4923- 9) is a condensed reference to all essential data structures, algorithms,
and functions provided by the C++ Standard Library up until the C++17 standard.1 Appendix B,
“Annotated Bibliography,” lists a couple more references. Two excellent online references are:

➤➤ cppreference.com: You can use this reference online or download an offline version for use
when you are not connected to the Internet.

➤➤ cplusplus.com/reference

When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

The following are additional excellent online resources:

➤➤ github.com/isocpp/CppCoreGuidelines: The C++ Core Guidelines are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of
many person- years of discussion and design across a number of organizations. The aim of
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on
relatively higher- level issues, such as interfaces, resource management, memory management,
and concurrency.

➤➤ github.com/Microsoft/GSL: This is an implementation by Microsoft of the Guidelines
Support Library (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It’s a header- only library.

➤➤ isocpp.org/faq: This is a large collection of frequently asked C++ questions.

➤➤ stackoverflow.com: Search for answers to common programming questions— or ask your
own questions.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout this book.

WARNING Boxes like this one hold important, not- to- be- forgotten information
that is directly relevant to the surrounding text.

NOTE Tips, hints, tricks, and asides to the current discussion are placed in boxes
like this one.

1 At the time of this writing, an updated edition called C++23 Standard Library Quick Reference is being worked on,
which is a similar condensed reference but includes all C++20 and C++23 features.

http://cppreference.com
http://cplusplus.com/reference
http://github.com/isocpp/CppCoreGuidelines
http://github.com/Microsoft/GSL
http://isocpp.org/faq
http://stackoverflow.com

xlv

INTRODUCTION

As for styles in the text:

Important words are italic when they are introduced.

Keyboard strokes are shown like this: Ctrl+A.

Filenames and code within the text are shown like so: monkey.cpp.

URLs are shown like this: wiley.com

Code is presented in three different ways:

// Comments in code are shown like this.
In code examples, new and important code is highlighted like this.
Code that's less important in the present context or that has been shown before is
formatted like this.

Paragraphs or sections that are specific to the C++23 standard have a little C++23 icon on the
left, just as this paragraph does. C++11, C++14, C++17, and C++20 features are not marked
with any icon.

WHAT YOU NEED TO USE THIS BOOK

All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor- specific compiler extensions.

Any C++ Compiler
You can use whichever C++ compiler you like. If you don’t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free.

The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.

C++23

COMPILERS AND C++23 FEATURE SUPPORT

This book discusses new features introduced with the C++23 standard. At the time
of this writing, no compilers were fully C++23-compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up
with all new features, and I’m sure it won’t take long before there will be full
C++23- compliant compilers available. You can keep track of which compiler
supports which features at en.cppreference.com/w/cpp/compiler_support.

http://wrox.com
http://en.cppreference.com/w/cpp/compiler_support

xlvi

INTRODUCTION

Example: Microsoft Visual C++ 2022
First, you need to create a project. Start Visual C++ 2022, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File ➪ New ➪ Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows,
and Console, and click Next. Specify a name for the project and a location where to save it and
click Create.

Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, select View ➪ Solution Explorer. A newly created project will con-
tain a file called <projectname>.cpp under the Source Files section in the Solution Explorer. You
can start writing your C++ code in that .cpp file, or if you want to compile source code files from
the downloadable source archive for this book, select the <projectname>.cpp file in the Solution
Explorer and delete it. You can add new files or existing files to a project by right- clicking the project
name in the Solution Explorer and then selecting Add ➪ New Item or Add ➪ Existing Item.

At the time of this writing, Visual C++ 2022 does not yet automatically enable C++23 features. To
enable C++23 features, in the Solution Explorer window, right- click your project and click Properties.
In the Properties window, go to Configuration Properties ➪ General, set the C++ Language Standard
option to ISO C++23 Standard or Preview - Features from the Latest C++ Working Draft, whichever
is available in your version of Visual C++, and click OK.

Finally, select Build ➪ Build Solution to compile your code. When it compiles without errors, you can
run it with Debug ➪ Start Debugging.

NOTE Microsoft Visual C++ has full support for modules, including the C++23
standard named module std.

Example: GCC
You can create your source code files with any text editor you prefer and save them to a directory. To
compile your code, open a terminal and run the following command, specifying all your .cpp files
that you want to compile:

g++ - std=c++2b - o <executable_name> <source1.cpp> [source2.cpp ...]

COMPILERS AND C++ MODULE SUPPORT

At the time of this writing, not all compilers fully support modules yet; though all
major compilers do, at least partially. This book uses modules everywhere. If your
compiler does not yet support modules, you can convert modularized code to
non- modularized code, as explained briefly in Chapter 11, “Modules, Header Files,
and Miscellaneous Topics.”

xlvii

INTRODUCTION

The - std=c++2b option is required to tell GCC to enable C++23 features. This option will change to
- std=C++23 once GCC is fully C++23-compliant.

Module Support
Support for modules in GCC is enabled with the - fmodules- ts option.

At the time of this writing, GCC does not yet support the C++23 standard named module std, intro-
duced in Chapter 1. To make such code compile, you have to replace import std; declarations with
import declarations of individual Standard Library headers. Once that is done, import declarations
of Standard Library headers, such as the following, require you to precompile them:

import <iostream>;

Here is an example of precompiling <iostream>:

g++ - std=c++2b - fmodules- ts - xc++- system- header iostream

As an example, the AirlineTicket code from Chapter 1 uses modules. To compile it with GCC, first
replace the use of std::println() with std::cout as GCC does not yet support <print> function-
ality at the time of this writing. After that, replace the import std; declarations with the appropriate
import declarations, <string> and <iostream> for this example. You can find the adapted code in
the Examples\Ch00\AirlineTicket directory in the downloadable source code archive.

Then, compile the two standard headers <iostream> and <string>:

g++ - std=c++2b - fmodules- ts - xc++- system- header iostream
g++ - std=c++2b - fmodules- ts - xc++- system- header string

Compile the module interface file:

g++ - std=c++2b - fmodules- ts - c - x c++ AirlineTicket.cppm

Finally, compile the application itself:

g++ - std=c++2b - fmodules- ts - o AirlineTicket AirlineTicket.cpp
AirlineTicketTest.cpp AirlineTicket.o

When it compiles without errors, you can run it as follows:

./AirlineTicket

NOTE The process of compiling C++ code using C++ modules with GCC might
change in the future. Also, support for the C++23 standard named module std
will be added. In that case, please consult the GCC documentation for an updated
procedure on how to compile such code.

C++23’s Support for Printing Ranges
Chapter 2, “Working with Strings and String Views,” explains that you can easily print the entire con-
tents of Standard Library containers, such as std::vector, to the screen. This is a new feature since
C++23 and not all compilers support this yet at the time of this writing.

xlviii

INTRODUCTION

As an example, Chapter 2 explains that you can write the contents of an std::vector as follows.
Don’t worry if you don’t understand all the syntax yet, you will at the end of Chapter 2.

std::vector values { 11, 22, 33 };
std::print("{:n}", values);

This outputs:

11, 22, 33

If your compiler does not yet support this C++23 feature to print the contents of a container using
std::print(), then you can convert the second line of code to the following:

for (const auto& value : values) { std::cout << value << ", "; }

This outputs:

11, 22, 33,

Again, don’t worry if you don’t understand the syntax yet. All will be clear at the end of Chapter 2.

READER SUPPORT FOR THIS BOOK

The following sections describe different options to get support for this book.

Companion Download Files
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the
code manually because it greatly benefits the learning process and your memory. All of the source
code used in this book is available for download at www.wiley.com/go/proc++6e or from GitHub
at github.com/Professional-CPP/edition-6.

NOTE Because many books have similar titles, you may find it easiest to search by
ISBN; for this book, the ISBN is 978-1-394-19317-2.

Once you’ve downloaded the code, just decompress it with your favorite decompression tool.

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

http://www.wiley.com/go/proc++6e
http://github.com/Professional-CPP/edition-6

