

PROFESSIONAL

C++

Sixth Edition

Marc Gregoire

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394193172 (Paperback), 9781394193196 (ePDF), 9781394193189 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2023948608

Cover image: © CSA-Printstock/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Dedicated to my amazing parents and brother,

whose continuous support and patience help me in

tackling such a big project as writing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software project
manager and software architect at Nikon Metrology (industry.nikon.com), a division of Nikon
and a leading provider of precision optical instruments, X-ray machines, and metrology solutions for
X-ray, CT, and 3-D geometric inspection.

His main expertise is C++. He has experience with developing C++ programs running 24/7 on Win-
dows and Linux platforms: for example, KNX/EIB home automation software. In addition to C++,
Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (becpp.org), co-author of C++ Standard
Library Quick Reference 1st and 2nd editions (Apress 2016 and 2019), a technical editor for numer-
ous books for several publishers, and a regular speaker at the CppCon C++ conference (cppcon.org).
He maintains a blog at www.nuonsoft.com/blog and is passionate about traveling and gastronomic
restaurants.

ABOUT THE TECHNICAL EDITORS

BRADLEY JONES has programmed in a variety of languages and tools ranging from C to Unity on
platforms ranging from Windows to mobile and including the web as well as a little bit of virtual
reality and embedded devices just for fun. In addition to programming, he has authored books on C,
C++, C#, Windows, the web, and many more technical topics and a few nontechnical topics. Bradley
is the owner of Lots of Software, LLC, and has been recognized in the industry as a community influ-
encer as well as has been recognized as a Microsoft MVP, a CODiE Judge, an international technol-
ogy speaker, a bestselling technical author, and more.

ARTHUR O’DWYER is a professional C++ trainer, software engineer, author, and WG21 committee
member. He authored Mastering the C++17 STL (Packt Publishing, 2017), founded CppCon’s “Back
to Basics” track (2019), implemented libc++’s <memory_resource> header (2022), and is responsible
for the simplified “implicit move” semantics in C++20 and C++23. He and his wife live in New York.

http://industry.nikon.com
http://becpp.org
http://cppcon.org
http://www.nuonsoft.com/blog

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS editorial and production teams for their support. A special thank-
you to Jim Minatel, executive editor at Wiley, for giving me a chance to write this sixth edition; Pete
Gaughan, senior managing editor; Ashirvad Moses Thyagarajan, managing editor; Kathryn Hogan,
PhD, project manager; Archana Pragash, content refinement specialist; and Kim Wimpsett, copyeditor.

A special thank you to technical editors Bradley Jones and Arthur O’Dwyer for checking the technical
accuracy of the book. Their feedback and numerous contributions have strengthened this book and
are greatly appreciated.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for supporting me over all these years and across numerous editions
with this approach to professional C++ software development.

—Marc Gregoire

CONTENTS

INTRODUCTION	 xli

PART I: INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY	3

C++ Crash Course	 4
The Obligatory “Hello, World” Program	 4

Comments	 5
Importing Modules	 5
How the Compiler Processes Your Source Code	 6
Preprocessor Directives	 6
The main() Function	 7
Printing Text	 7
I/O Streams	 7
Returning from a Function	 9

Namespaces	 9
Nested Namespace	 11
Namespace Alias	 11

Literals	 11
Variables	 12

Numerical Limits	 15
Zero Initialization	 15
Casting	 16
Floating-Point Numbers	 16

Operators	 18
Enumerations	 21

Old-Style Enumerations	 22
Structs	 23
Conditional Statements	 24

if/else Statements	 24
switch Statements	 25

The Conditional Operator	 27
Logical Evaluation Operators	 27
Three-Way Comparisons	 29
Functions	 30

Contents

Function Return Type Deduction	 31
Current Function’s Name	 32
Function Overloading	 32

Attributes	 32
[[nodiscard]]	 33
[[maybe_unused]]	 33
[[noreturn]]	 34
[[deprecated]]	 34
[[likely]] and [[unlikely]]	 35
[[assume]]	 35

C-Style Arrays	 36
std::array	 37
std::vector	 38
std::pair	 39
std::optional	 40
Structured Bindings	 41
Loops	 41

The while Loop	 41
The do/while Loop	 42
The for Loop	 42
The Range-Based for Loop	 42

Initializer Lists	 43
Strings in C++	 43
C++ as an Object-Oriented Language	 44

Defining Classes	 44
Using Classes	 47

Scope Resolution	 47
Uniform Initialization	 48

Designated Initializers	 51
Pointers and Dynamic Memory	 52

The Stack and the Free Store	 52
Working with Pointers	 53
Dynamically Allocated Arrays	 54
Null Pointer Constant	 55

The Use of const	 56
const as a Qualifier for a Type	 56
const Member Functions	 58

References	 59
Reference Variables	 59
Reference Data Members	 62
Reference Parameters	 62

viii

ix

Contents

Reference Return Values	 65
Deciding Between References and Pointers	 65

const_cast()	 69
Exceptions	 70
Type Aliases	 71
typedefs	 72
Type Inference	 72

The auto Keyword	 72
The decltype Keyword	 75

The Standard Library	 75
Your First Bigger C++ Program	 76

An Employee Records System	 76
The Employee Class	 76

Employee.cppm	 76
Employee.cpp	 78
EmployeeTest.cpp	 79

The Database Class	 80
Database.cppm	 80
Database.cpp	 81
DatabaseTest.cpp	 82

The User Interface	 82
Evaluating the Program	 85

Summary	 85
Exercises	 85

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS	 87

Dynamic Strings	 88
C-Style Strings	 88
String Literals	 90

Raw String Literals	 90
The C++ std::string Class	 92

What Is Wrong with C-Style Strings?	 92
Using the std::string Class	 92
std::string Literals	 95
CTAD with std::vector and Strings	 96

Numeric Conversions	 96
High-Level Numeric Conversions	 96
Low-Level Numeric Conversions	 98

The std::string_view Class	 100
std::string_view and Temporary Strings	 102
std::string_view Literals	 102

x

Contents

Nonstandard Strings	 103
Formatting and Printing Strings	 103

Format Strings	 104
Argument Indices	 105
Printing to Different Destinations	 106
Compile-Time Verification of Format Strings	 106

Non-Compile-Time Constant Format Strings	 106
Handling Errors in Non-Compile-Time Constant Format Strings	 107

Format Specifiers	 107
width	 108
[fill]align	 108
sign	 109
#	 109
type	 109
precision	 110
0	 111
L	 111

Formatting Escaped Characters and Strings	 111
Formatting Ranges	 112
Support for Custom Types	 114

Summary	 117
Exercises	 117

CHAPTER 3: CODING WITH STYLE	 119

The Importance of Looking Good	 119
Thinking Ahead	 120
Elements of Good Style	 120

Documenting Your Code	 120
Reasons to Write Comments	 120

Commenting to Explain Usage	 120
Commenting to Explain Complicated Code	 122
Commenting to Convey Meta-information	 124
Copyright Comment	 125

Commenting Styles	 125
Commenting Every Line	 125
Prefix Comments	 126
Fixed-Format Comments	 127
Ad Hoc Comments	 129
Self-Documenting Code	 129

Decomposition	 129
Decomposition through Refactoring	 130

xi

Contents

Decomposition by Design	 131
Decomposition in This Book	 131

Naming	 132
Choosing a Good Name	 132
Naming Conventions	 133

Counters	 133
Prefixes	 133
Hungarian Notation	 134
Getters and Setters	 134
Capitalization	 134
Namespaced Constants	 134

Using Language Features with Style	 135
Use Constants	 135
Use References Instead of Pointers	 136
Use Custom Exceptions	 136

Formatting	 137
The Curly Brace Alignment Debate	 137
Coming to Blows over Spaces and Parentheses	 138
Spaces, Tabs, and Line Breaks	 139

Stylistic Challenges	 139
Summary	 140
Exercises	 140

PART II: PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS	 145

What is Programming Design?	 146
The Importance of Programming Design	 147
Designing For C++	 149
Two Rules for Your Own C++ Designs	 150

Abstraction	 150
Benefiting from Abstraction	 150
Incorporating Abstraction in Your Design	 151

Reuse	 152
Writing Reusable Code	 153
Reusing Designs	 153

Reusing Existing Code	 154
A Note on Terminology	 155
Deciding Whether to Reuse Code or Write It Yourself	 156

Advantages to Reusing Code	 156

xii

Contents

Disadvantages to Reusing Code	 157
Putting It Together to Make a Decision	 158

Guidelines for Choosing a Library to Reuse	 158
Understand the Capabilities and Limitations	 158
Understand the Learning Cost	 159
Understand the Performance	 159
Understand Platform Limitations	 162
Understand Licensing	 162
Understand Support and Know Where to Find Help	 162
Prototype	 163
Open-Source Libraries	 163
The C++ Standard Library	 165

Designing a Chess Program	 166
Requirements	 166
Design Steps	 167

Divide the Program into Subsystems	 167
Choose Threading Models	 169
Specify Class Hierarchies for Each Subsystem	 170
Specify Classes, Data Structures, Algorithms, and Patterns
for Each Subsystem	 170
Specify Error Handling for Each Subsystem	 173

Summary	 174
Exercises	 175

CHAPTER 5: DESIGNING WITH CLASSES	 177

Am I Thinking Procedurally?	 178
The Object-Oriented Philosophy	 178

Classes	 178
Components	 179
Properties	 179
Behaviors	 180
Bringing It All Together	 180

Living In a World of Classes	 181
Over-Classification	 182
Overly General Classes	 182

Class Relationships	 183
The Has-a Relationship	 183
The Is-a Relationship (Inheritance)	 184

Inheritance Techniques	 185
Polymorphism	 186

The Fine Line Between Has-a and Is-a	 186

xiii

Contents

The Not-a Relationship	 190
Hierarchies	 191
Multiple Inheritance	 192
Mixin Classes	 193

Summary	 194
Exercises	 194

CHAPTER 6: DESIGNING FOR REUSE	 197

The Reuse Philosophy	 198
How to Design Reusable Code	 198

Use Abstraction	 199
Structure Your Code for Optimal Reuse	 200

Avoid Combining Unrelated or Logically Separate Concepts	 201
Use Templates for Generic Data Structures and Algorithms	 203
Provide Appropriate Checks and Safeguards	 205
Design for Extensibility	 206

Design Usable Interfaces	 208
Consider the Audience	 208
Consider the Purpose	 209
Design Interfaces That Are Easy to Use	 210
Design General-Purpose Interfaces	 214
Reconciling Generality and Ease of Use	 215

Designing a Successful Abstraction	 216
The SOLID Principles	 216

Summary	 217
Exercises	 217

PART III: C++ CODING THE PROFESSIONAL WAY

CHAPTER 7: MEMORY MANAGEMENT	 221

Working with Dynamic Memory	 222
How to Picture Memory	 222
Allocation and Deallocation	 223

Using new and delete	 223
What About My Good Friend malloc?	 224
When Memory Allocation Fails	 225

Arrays	 225
Arrays of Primitive Types	 226
Arrays of Objects	 228

xiv

Contents

Deleting Arrays	 228
Multidimensional Arrays	 229

Working with Pointers	 233
A Mental Model for Pointers	 233
Casting with Pointers	 234

Array-Pointer Duality	 234
Arrays Decay to Pointers	 234
Not All Pointers Are Arrays!	 236

Low-Level Memory Operations	 236
Pointer Arithmetic	 236
Custom Memory Management	 237
Garbage Collection	 238
Object Pools	 238

Common Memory Pitfalls	 239
Underallocating Data Buffers and Out-of-Bounds Memory Access	 239
Memory Leaks	 240

Finding and Fixing Memory Leaks in Windows with Visual C++	 241
Finding and Fixing Memory Leaks in Linux with Valgrind	 243

Double-Deletion and Invalid Pointers	 243
Smart Pointers	 244

unique_ptr	 245
Creating unique_ptrs	 245
Using unique_ptrs	 247
unique_ptr and C-Style Arrays	 248
Custom Deleters	 248

shared_ptr	 249
Creating and Using shared_ptrs	 249
The Need for Reference Counting	 250
Casting a shared_ptr	 251
Aliasing	 252

weak_ptr	 252
Passing to Functions	 253
Returning from Functions	 253
enable_shared_from_this	 254
Interoperability of Smart Pointers with C-Style Functions	 255
The Old and Removed auto_ptr	 255

Summary	 256
Exercises	 256

xv

Contents

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES AND OBJECTS	259

Introducing the Spreadsheet Example	 260
Writing Classes	 260

Class Definitions	 260
Class Members	 261
Access Control	 261
Order of Declarations	 262
In-Class Member Initializers	 263

Defining Member Functions	 263
Accessing Data Members	 264
Calling Other Member Functions	 264

Using Objects	 265
Objects on the Stack	 266
Objects on the Free Store	 266

The this Pointer	 267
Explicit Object Parameter	 268

Understanding Object Life Cycles	 269
Object Creation	 269

Writing Constructors	 270
Using Constructors	 270
Providing Multiple Constructors	 271
Default Constructors	 272
Constructor Initializers aka Ctor-Initializers	 276
Copy Constructors	 279
Initializer-List Constructors	 281
Delegating Constructors	 283
Converting Constructors and Explicit Constructors	 284
Summary of Compiler-Generated Constructors	 285

Object Destruction	 286
Assigning to Objects	 288

Declaring an Assignment Operator	 288
Defining an Assignment Operator	 289
Explicitly Defaulted and Deleted Assignment Operator	 290

Compiler-Generated Copy Constructor and Copy Assignment Operator	 291
Distinguishing Copying from Assignment	 291

Objects as Return Values	 291
Copy Constructors and Object Members	 292

Summary	 293
Exercises	 293

xvi

Contents

CHAPTER 9: MASTERING CLASSES AND OBJECTS	 295

Friends	 296
Dynamic Memory Allocation in Objects	 297

The Spreadsheet Class	 297
Freeing Memory with Destructors	 300
Handling Copying and Assignment	 301

The Spreadsheet Copy Constructor	 303
The Spreadsheet Assignment Operator	 303
Disallowing Assignment and Pass-by-Value	 306

Handling Moving with Move Semantics	 307
Rvalue References	 307
Decay Copy	 310
Implementing Move Semantics	 310
Testing the Spreadsheet Move Operations	 314
Implementing a Swap Function with Move Semantics	 316
Using std::move() in Return Statements	 317
Optimal Way to Pass Arguments to Functions	 318

Rule of Zero	 319
More About Member Functions	 320

static Member Functions	 320
const Member Functions	 321

mutable Data Members	 322
Member Function Overloading	 323

Overloading Based on const	 323
Explicitly Deleting Overloads	 325
Ref-Qualified Member Functions	 325

Inline Member Functions	 327
Default Arguments	 329

Constexpr and Consteval	 330
The constexpr Keyword	 330
The consteval Keyword	 331
constexpr and consteval Classes	 332

Different Kinds of Data Members	 333
static Data Members	 333

Inline Variables	 334
Accessing static Data Members from within Class
Member Functions	 334

constexpr static Data Members	 335
Accessing static Data Members from Outside
Class Member Functions	 336

Reference Data Members	 336

xvii

Contents

Nested Classes	 338
Enumerations Inside Classes	 339
Operator Overloading	 339

Example: Implementing Addition for SpreadsheetCells	 340
First Attempt: The add Member Function	 340
Second Attempt: Overloaded operator+ as a Member Function	 341
Third Attempt: Global operator+	 342

Overloading Arithmetic Operators	 343
Overloading the Arithmetic Shorthand Operators	 344

Overloading Comparison Operators	 345
Overloading Comparison Operators Before C++20	 345
Overloading Comparison Operators Since C++20	 347
Compiler-Generated Comparison Operators	 348

Building Stable Interfaces	 350
Using Interface and Implementation Classes	 350

Summary	 354
Exercises	 354

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES	 357

Building Classes with Inheritance	 358
Extending Classes	 358

A Client’s View of Inheritance	 359
A Derived Class’s View of Inheritance	 360
Preventing Inheritance	 362

Overriding Member Functions	 362
The virtual Keyword	 362
Syntax for Overriding a Member Function	 363
A Client’s View of Overridden Member Functions	 363
The override Keyword	 365
The Truth about virtual	 366
Preventing Overriding	 370

Inheritance For Reuse	 370
The WeatherPrediction Class	 370
Adding Functionality in a Derived Class	 371
Replacing Functionality in a Derived Class	 373

Respect Your Parents	 373
Parent Constructors	 373
Parent Destructors	 375
virtual Member Function Calls within Constructors and Destructor	 376
Referring to Parent Names	 377
Casting Up and Down	 379

xviii

Contents

Inheritance for Polymorphism	 380
Return of the Spreadsheet	 380
Designing the Polymorphic Spreadsheet Cell	 381
The SpreadsheetCell Base Class	 382

A First Attempt	 382
Pure virtual Member Functions and Abstract Base Classes	 382

The Individual Derived Classes	 383
StringSpreadsheetCell Class Definition	 383
StringSpreadsheetCell Implementation	 384
DoubleSpreadsheetCell Class Definition and Implementation	 384

Leveraging Polymorphism	 385
Future Considerations	 386
Providing Implementations for Pure virtual Member Functions	 388

Multiple Inheritance	 388
Inheriting from Multiple Classes	 389
Naming Collisions and Ambiguous Base Classes	 390

Name Ambiguity	 390
Ambiguous Base Classes	 391
Uses for Multiple Inheritance	 392

Interesting and Obscure Inheritance Issues	 392
Changing the Overridden Member Function’s Return Type	 393
Adding Overloads of virtual Base Class Member
Functions to Derived Classes	 396
Inherited Constructors	 396

Hiding of Inherited Constructors	 397
Inherited Constructors and Multiple Inheritance	 398
Initialization of Data Members	 399

Special Cases in Overriding Member Functions	 400
The Base Class Member Function Is static	 400
The Base Class Member Function Is Overloaded	 401
The Base Class Member Function Is private	 403
The Base Class Member Function Has Default Arguments	 404
The Base Class Member Function Has a Different
Access Specification	 405

Copy Constructors and Assignment Operators in Derived Classes	 407
Run-Time Type Facilities	 408
Non-public Inheritance	 410
Virtual Base Classes	 411

Casts	 414
static_cast()	 414

xix

Contents

reinterpret_cast()	 415
dynamic_cast()	 416
std::bit_cast()	 417
Summary of Casts	 418

Summary	 418
Exercises	 419

CHAPTER 11: MODULES, HEADER FILES, AND
MISCELLANEOUS TOPICS	 421

Modules	 422
Unmodularizing Code	 423
Standard Named Modules	 423
Module Interface Files	 423
Module Implementation Files	 425
Splitting Interface from Implementation	 426
Visibility vs. Reachability	 427
Submodules	 428
Module Partitions	 429

Implementation Partitions	 431
Private Module Fragment	 432
Header Units	 433
Importable Standard Library Headers	 434

Preprocessor Directives	 436
Preprocessor Macros	 437

Linkage	 438
Internal Linkage	 439
The extern Keyword	 440

Header Files	 441
One Definition Rule (ODR)	 441
Duplicate Definitions	 442
Circular Dependencies	 442
Querying Existence of Headers	 443
Module Import Declarations	 443

Feature-Test Macros for Core Language Features	 444
The Static Keyword	 445

static Data Members and Member Functions	 445
static Variables in Functions	 445
Order of Initialization of Nonlocal Variables	 446
Order of Destruction of Nonlocal Variables	 446

xx

Contents

C-Style Variable-Length Argument Lists	 447
Accessing the Arguments	 448
Why You Shouldn’t Use C-Style Variable-Length Argument Lists	 448

Summary	 449
Exercises	 449

CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES	 451

Overview of Templates	 452
Class Templates	 453

Writing a Class Template	 453
Coding Without Templates	 453
A Template Grid Class	 456
Using the Grid Template	 460

How the Compiler Processes Templates	 461
Selective/Implicit Instantiation	 462
Explicit Instantiation	 462
Template Requirements on Types	 462

Distributing Template Code Between Files	 463
Member Function Definitions in Same File as Class
Template Definition	 463
Member Function Definitions in Separate File	 463

Template Parameters	 464
Non-type Template Parameters	 464
Default Values for Template Parameters	 466
Class Template Argument Deduction	 467

Member Function Templates	 468
Member Function Templates with Non-type Template
Parameters	 471
Using Member Function Templates with Explicit
Object Parameters to Avoid Code Duplication	 473

Class Template Specialization	 474
Deriving from Class Templates	 477
Inheritance vs. Specialization	 478
Alias Templates	 479

Function Templates	 479
Function Overloads vs. Function Template	 481
Function Template Overloading	 481
Function Templates as Friends of Class Templates	 482
More on Template Type Parameter Deduction	 484
Return Type of Function Templates	 484
Abbreviated Function Template Syntax	 486

xxi

Contents

Variable Templates	 487
Concepts	 487

Syntax	 488
Constraints Expression	 488

Requires Expressions	 489
Combining Concept Expressions	 491

Predefined Standard Concepts	 491
Type-Constrained auto	 492
Type Constraints and Function Templates	 493

Constraint Subsumption	 495
Type Constraints and Class Templates	 495
Type Constraints and Class Member Functions	 496
Constraint-Based Class Template Specialization and
Function Template Overloading	 496
Best Practices	 497

Summary	 498
Exercises	 498

CHAPTER 13: DEMYSTIFYING C++ I/O	 501

Using Streams	 502
What Is a Stream, Anyway?	 502
Stream Sources and Destinations	 504
Output with Streams	 504

Output Basics	 504
Member Functions of Output Streams	 505
Handling Output Errors	 506
Output Manipulators	 508

Input with Streams	 510
Input Basics	 510
Handling Input Errors	 511
Input Member Functions	 512
Input Manipulators	 516

Input and Output with Objects	 517
Custom Manipulators	 519

String Streams	 519
Span-Based Streams	 521
File Streams	 522

Text Mode vs. Binary Mode	 523
Jumping Around with seek() and tell()	 523
Linking Streams Together	 526
Read an Entire File	 526

xxii

Contents

Bidirectional I/O	 527
Filesystem Support Library	 528

Path	 528
Directory Entry	 530
Helper Functions	 530
Directory Iteration	 530

Summary	 531
Exercises	 532

CHAPTER 14: HANDLING ERRORS	 533

Errors and Exceptions	 534
What Are Exceptions, Anyway?	 534
Why Exceptions in C++ Are a Good Thing	 535
Recommendation	 536

Exception Mechanics	 536
Throwing and Catching Exceptions	 537
Exception Types	 540
Catching Exception Objects as Reference-to-const	 541
Throwing and Catching Multiple Exceptions	 541

Matching and const	 543
Matching Any Exception	 543

Uncaught Exceptions	 544
noexcept Specifier	 546
noexcept(expression) Specifier	 546
noexcept(expression) Operator	 546
Throw Lists	 547

Exceptions and Polymorphism	 547
The Standard Exception Hierarchy	 547
Catching Exceptions in a Class Hierarchy	 549
Writing Your Own Exception Classes	 550
Nested Exceptions	 553

Rethrowing Exceptions	 555
Stack Unwinding and Cleanup	 556

Use Smart Pointers	 558
Catch, Cleanup, and Rethrow	 558

Source Location	 559
Source Location for Logging	 560
Automatically Embed a Source Location in Custom Exceptions	 560

Stack Trace	 561

xxiii

Contents

The Stack Trace Library	 561
Automatically Embed a Stack Trace in Custom Exceptions	 563

Common Error-Handling Issues	 564
Memory Allocation Errors	 565

Non-throwing new	 565
Customizing Memory Allocation Failure Behavior	 566

Errors in Constructors	 567
Function-Try-Blocks for Constructors	 569
Errors in Destructors	 572

Exception Safety Guarantees	 573
Summary	 573
Exercises	 573

CHAPTER 15: OVERLOADING C++ OPERATORS	 577

Overview of Operator Overloading	 578
Why Overload Operators?	 578
Limitations to Operator Overloading	 578
Choices in Operator Overloading	 579

Member Function or Global Function	 579
Choosing Argument Types	 580
Choosing Return Types	 581
Choosing Behavior	 581

Operators You Shouldn’t Overload	 581
Summary of Overloadable Operators	 582
Rvalue References	 586
Precedence and Associativity	 587
Relational Operators	 588
Alternative Notation	 589

Overloading The Arithmetic Operators	 589
Overloading Unary Minus and Unary Plus	 589
Overloading Increment and Decrement	 590

Overloading the Bitwise and Binary Logical Operators	 591
Overloading the Insertion and Extraction Operators	 591
Overloading the Subscripting Operator	 593

Providing Read-Only Access with operator[]	 596
Multidimensional Subscripting Operator	 598
Non-integral Array Indices	 599
static Subscripting Operator	 599

Overloading the Function Call Operator	 600
static Function Call Operator	 601

xxiv

Contents

Overloading the Dereferencing Operators	 602
Implementing operator*	 603
Implementing operator–>	 604
What in the World Are operator.* and operator–>*?	 604

Writing Conversion Operators	 605
Operator auto	 606
Solving Ambiguity Problems with Explicit Conversion Operators	 606
Conversions for Boolean Expressions	 607

Overloading the Memory Allocation and Deallocation Operators	 609
How new and delete Really Work	 609

The New-Expression and operator new	 609
The Delete-Expression and operator delete	 610

Overloading operator new and operator delete	 610
Explicitly Deleting or Defaulting operator new and operator delete	 613
Overloading operator new and operator delete with Extra Parameters	 613
Overloading operator delete with Size of Memory as Parameter	 614

Overloading User-Defined Literal Operators	 615
Standard Library Literals	 615
User-Defined Literals	 616

Cooked-Mode Literal Operator	 616
Raw-Mode Literal Operator	 617

Summary	 618
Exercises	 618

CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY	 619

Coding Principles	 620
Use of Templates	 621
Use of Operator Overloading	 621

Overview of the C++ Standard Library	 621
Strings	 621
Regular Expressions	 622
I/O Streams	 622
Smart Pointers	 622
Exceptions	 623
Standard Integer Types	 623
Numerics Library	 623
Integer Comparisons	 624
Bit Manipulation	 624
Time and Date Utilities	 625
Random Numbers	 625

xxv

Contents

Initializer Lists	 626
Pair and Tuple	 626
Vocabulary Types	 626
Function Objects	 627
Filesystem	 627
Multithreading	 627
Type Traits	 627
Standard Library Feature-Test Macros	 627
<version>	 629
Source Location	 629
Stack Trace	 629
Containers	 629

Sequential Containers	 630
Sequential Views	 632
Container Adapters	 632
Ordered Associative Containers	 634
Unordered Associative Containers/Hash Tables	 635
Flat Associative Container Adapters	 635
bitset	 636
Summary of Standard Library Containers	 636

Algorithms	 639
Non-modifying Sequence Algorithms	 640
Modifying Sequence Algorithms	 642
Operational Algorithms	 643
Swap Algorithms	 644
Partitioning Algorithms	 644
Sorting Algorithms	 645
Binary Search Algorithms	 645
Set Algorithms on Sorted Sequences	 645
Other Algorithms on Sorted Sequences	 646
Heap Algorithms	 646
Minimum/Maximum Algorithms	 646
Numerical Processing Algorithms	 647
Permutation Algorithms	 648
Choosing an Algorithm	 648

Ranges Library	 649
What’s Missing from the Standard Library	 650

Summary	 650
Exercises	 650

xxvi

Contents

CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY	 653

Iterators	 654
Getting Iterators for Containers	 656
Iterator Traits	 658
Examples	 659
Function Dispatching Using Iterator Traits	 660

Stream Iterators	 661
Output Stream Iterator: ostream_iterator	 662
Input Stream Iterator: istream_iterator	 663
Input Stream Iterator: istreambuf_iterator	 663

Iterator Adapters	 663
Insert Iterators	 664
Reverse Iterators	 665
Move Iterators	 666

Ranges	 668
Constrained Algorithms	 669

Projection	 670
Views	 671

Modifying Elements Through a View	 677
Mapping Elements	 677

Range Factories	 678
Input Streams as Views	 679

Converting a Range into a Container	 680
Summary	 681
Exercises	 681

CHAPTER 18: STANDARD LIBRARY CONTAINERS	 683

Containers Overview	 684
Requirements on Elements	 685
Exceptions and Error Checking	 687

Sequential Containers	 687
vector	 687

vector Overview	 687
vector Details	 690
Move Semantics	 703
vector Example: A Round-Robin Class	 704

The vector<bool> Specialization	 709
deque	 709
list	 710

xxvii

Contents

Accessing Elements	 710
Iterators	 711
Adding and Removing Elements	 711
list Size	 711
Special list Operations	 711
list Example: Determining Enrollment	 713

forward_list	 714
array	 717

Sequential Views	 718
span	 718
mdspan	 720

Container Adapters	 722
queue	 722

queue Operations	 722
queue Example: A Network Packet Buffer	 723

priority_queue	 725
priority_queue Operations	 725
priority_queue Example: An Error Correlator	 726

stack	 727
stack Operations	 728
stack Example: Revised Error Correlator	 728

Associative Containers	 728
Ordered Associative Containers	 728

The pair Utility Class	 729
map	 729
multimap	 738
set	 742
multiset	 744

Unordered Associative Containers Or Hash Tables	 744
Hash Functions	 744
unordered_map	 746
unordered_multimap	 750
unordered_set/unordered_multiset	 751

Flat Set and Flat Map Associative Container Adapters	 751
Performance of Associative Containers	 752

Other Containers	 752
Standard C-Style Arrays	 752
Strings	 753
Streams	 754
bitset	 754

bitset Basics	 755

xxviii

Contents

Bitwise Operators	 755
bitset Example: Representing Cable Channels	 756

Summary	 759
Exercises	 759

CHAPTER 19: FUNCTION POINTERS, FUNCTION
OBJECTS, AND LAMBDA EXPRESSIONS	 761

Function Pointers	 762
findMatches() Using Function Pointers	 762
findMatches() As a Function Template	 764
Windows DLLs and Function Pointers	 765

Pointers to Member Functions (And Data Members)	 765
Function Objects	 767

Writing Your First Function Object	 767
Function Objects in the Standard Library	 767

Arithmetic Function Objects	 768
Comparison Function Objects	 769
Logical Function Objects	 771
Bitwise Function Objects	 771
Adapter Function Objects	 771

Polymorphic Function Wrappers	 775
std::function	 775
std::move_only_function	 776

Lambda Expressions	 777
Syntax	 777
Lambda Expressions as Parameters	 783
Generic Lambda Expressions	 783
Lambda Capture Expressions	 784
Templated Lambda Expressions	 785
Lambda Expressions as Return Type	 785
Lambda Expressions in Unevaluated Contexts	 786
Default Construction, Copying, and Assigning	 786
Recursive Lambda Expressions	 787

Invokers	 787
Summary	 788
Exercises	 788

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS	 791

Overview of Algorithms	 792
The find and find_if Algorithms	 793
The accumulate Algorithm	 795

xxix

Contents

Move Semantics with Algorithms	 796
Algorithm Callbacks	 796

Algorithm Details	 797
Non-modifying Sequence Algorithms	 798

Search Algorithms	 798
Specialized Searchers	 799
Comparison Algorithms	 800
Counting Algorithms	 802

Modifying Sequence Algorithms	 803
generate	 804
transform	 804
copy	 805
move	 806
replace	 808
erase	 808
remove	 809
unique	 810
shuffle	 811
sample	 811
reverse	 812
Shifting Elements	 812

Operational Algorithms	 813
for_each	 813
for_each_n	 814

Partition Algorithms	 814
Sorting Algorithms	 815
Binary Search Algorithms	 817
Set Algorithms	 818
Minimum/Maximum Algorithms	 820
Parallel Algorithms	 822
Numerical Processing Algorithms	 823

iota	 824
Reduce Algorithms	 824
Scan Algorithms	 825

Constrained Algorithms	 826
Constrained find	 826
Constrained generate	 826
Constrained for_each	 827
Constrained-Only Algorithms	 827

Summary	 828
Exercises	 828

xxx

Contents

CHAPTER 21: STRING LOCALIZATION AND
REGULAR EXPRESSIONS	 831

Localization	 832
Wide Characters	 832
Non-Western Character Sets	 833
Localizing String Literals	 835
Locales and Facets	 836

Locales	 836
Global Locale	 837
Using Locales	 837
Character Classification	 839
Character Conversion	 839
Using Facets	 839
Conversions	 840

Regular Expressions	 841
ECMAScript Syntax	 842

Anchor	 842
Wildcard	 843
Alternation	 843
Grouping	 843
Quantifier	 843
Precedence	 844
Character Set Matches	 844
Word Boundary	 846
Back Reference	 847
Lookahead	 847
Regular Expressions and Raw String Literals	 848
Common Regular Expressions	 848

The regex Library	 848
regex_match()	 849

regex_match() Examples	 850
regex_search()	 852

regex_search() Examples	 852
regex_iterator	 853

regex_iterator Examples	 853
regex_token_iterator	 854

regex_token_iterator Examples	 855
regex_replace()	 857

regex_replace() Examples	 857
Summary	 859
Exercises	 859

xxxi

Contents

CHAPTER 22: DATE AND TIME UTILITIES	 861

Compile-Time Rational Numbers	 862
Duration	 864

Examples and Converting Durations	 865
Predefined Durations	 867
Standard Literals	 868
hh_mm_ss	 868

Clock	 868
Printing Current Time	 870
Execution Timing	 870

Time Point	 871
Date	 873

Creating Dates	 873
Printing Dates	 875
Arithmetic with Dates	 876

Time Zone	 877
Summary	 878
Exercises	 878

CHAPTER 23: RANDOM NUMBER FACILITIES	 879

C-Style Random Number Generation	 880
Random Number Engines	 881
Random Number Engine Adapters	 882
Predefined Engines and Engine Adapters	 883
Generating Random Numbers	 884
Random Number Distributions	 885
Summary	 889
Exercises	 889

CHAPTER 24: ADDITIONAL VOCABULARY TYPES	 891

Variant	 892
Any	 894
Tuple	 895

Decompose Tuples	 897
Structured Bindings	 897
tie	 898

Concatenation	 898
Comparisons	 898
make_from_tuple	 899
apply	 900

Contents

xxxii

Optional: Monadic Operations	 900
Expected	 901

Exceptions, Error Return Codes, and expected	 904
Summary	 904
Exercises	 905

PART IV: MASTERING ADVANCED FEATURES OF C++

CHAPTER 25: CUSTOMIZING AND EXTENDING THE
STANDARD LIBRARY	 909

Allocators	 910
Extending the Standard Library	 911

Why Extend the Standard Library?	 912
Writing a Standard Library Algorithm	 912

find_all	 912
Modernized find_all	 914

Writing a Standard Library Container	 915
A Basic Directed Graph	 915
Making directed_graph a Standard Library Container	 925
Additional Standard Library–Like Functionality	 939
Further Improvements	 942
Other Container Types	 942

Summary	 942
Exercises	 943

CHAPTER 26: ADVANCED TEMPLATES	 945

More About Template Parameters	 946
More About Template Type Parameters	 946
Introducing Template Template Parameters	 949
More About Non-type Template Parameters	 951

Class Template Partial Specialization	 952
Emulating Function Partial Specialization with Overloading	 955
Template Recursion	 957

An N-Dimensional Grid: First Attempt	 957
A Real N-Dimensional Grid	 958

Variadic Templates	 960
Type-Safe Variable-Length Argument Lists	 961

constexpr if	 963
Variable Number of Mixin Classes	 963
Fold Expressions	 964

xxxiii

Contents

Metaprogramming	 966
Factorial at Compile Time	 967
Loop Unrolling	 968
Printing Tuples	 968

constexpr if	 970
Using a Compile-Time Integer Sequence with Folding	 971

Type Traits	 972
Using Type Categories	 973
Using Type Relationships	 975
Using the conditional Type Trait	 976
Using Type Modification Type Traits	 978
Using enable_if	 978
Using constexpr if to Simplify enable_if Constructs	 981
Logical Operator Traits	 982
Static Assertions	 982

Metaprogramming Conclusion	 983
Summary	 983
Exercises	 984

CHAPTER 27: MULTITHREADED PROGRAMMING WITH C++	 985

Introduction	 986
Race Conditions	 988
Tearing	 989
Deadlocks	 989
False Sharing	 991

Threads	 991
Thread with Function Pointer	 991
Thread with Function Object	 993
Thread with Lambda	 994
Thread with Member Function Pointer	 994
Thread-Local Storage	 995
Canceling Threads	 996
Automatically Joining Threads	 996

Cooperative Cancellation	 996
Retrieving Results from Threads	 998
Copying and Rethrowing Exceptions	 998

Atomic Operations Library	 1001
Atomic Operations	 1002
Atomic Smart Pointers	 1004
Atomic References	 1004
Using Atomic Types	 1004

xxxiv

Contents

Waiting on Atomic Variables	 1006
Mutual Exclusion	 1007

Mutex Classes	 1008
Spinlock	 1008
Non-timed Mutex Classes	 1009
Timed Mutex Classes	 1010

Locks	 1011
lock_guard	 1011
unique_lock	 1011
shared_lock	 1012
Acquiring Multiple Locks at Once	 1012
scoped_lock	 1013

std::call_once	 1014
Examples Using Mutexes	 1015

Thread-Safe Writing to Streams	 1015
Double-Checked Locking	 1017

Condition Variables	 1019
Spurious Wake-Ups	 1020
Using Condition Variables	 1020

Latches	 1021
Barriers	 1023
Semaphores	 1024
Futures	 1025

std::promise and std::future	 1026
std::packaged_task	 1027
std::async	 1028
Exception Handling	 1029
std::shared_future	 1029

Example: Multithreaded Logger Class	 1030
Thread Pools	 1035
Coroutines	 1036
Threading Design and Best Practices	 1038
Summary	 1039
Exercises	 1040

PART V: C++ SOFTWARE ENGINEERING

CHAPTER 28: MAXIMIZING SOFTWARE ENGINEERING
METHODS	 1043

The Need for Process	 1044
Software Life Cycle Models	 1045

xxxv

Contents

The Waterfall Model	 1045
Benefits of the Waterfall Model	 1046
Drawbacks of the Waterfall Model	 1046

Sashimi Model	 1047
Spiral-like Models	 1047

Benefits of a Spiral-like Model	 1048
Drawbacks of a Spiral-like Model	 1049

Agile	 1050
Software Engineering Methodologies	 1050

Scrum	 1050
Roles	 1051
The Process	 1051
Benefits of Scrum	 1053
Drawbacks of Scrum	 1053

The Unified Process	 1053
The Rational Unified Process	 1054

RUP as a Product	 1055
RUP as a Process	 1055
RUP in Practice	 1055

Extreme Programming	 1056
XP in Theory	 1056
XP in Practice	 1060

Software Triage	 1060
Building Your Own Process and Methodology	 1061

Be Open to New Ideas	 1061
Bring New Ideas to the Table	 1061
Recognize What Works and What Doesn’t Work	 1061
Don’t Be a Renegade	 1061

Version Control	 1062
Summary	 1064
Exercises	 1064

CHAPTER 29: WRITING EFFICIENT C++	 1065

Overview of Performance and Efficiency	 1066
Two Approaches to Efficiency	 1066
Two Kinds of Programs	 1066
Is C++ an Inefficient Language?	 1066

Language-Level Efficiency	 1067
Handle Objects Efficiently	 1068

Pass-by-Value or Pass-by-Reference	 1068
Return-by-Value or Return-by-Reference	 1070

Contents

xxxvi

Catch Exceptions by Reference	 1070
Use Move Semantics	 1070
Avoid Creating Temporary Objects	 1070

Pre-allocate Memory	 1071
Use Inline Functions	 1071
Mark Unreachable Code	 1072

Design-Level Efficiency	 1073
Cache Where Necessary	 1073
Use Object Pools	 1074

An Object Pool Implementation	 1074
Using the Object Pool	 1078

Profiling	 1079
Profiling Example with gprof	 1080

First Design Attempt	 1080
Profiling the First Design Attempt	 1083
Second Design Attempt	 1085
Profiling the Second Design Attempt	 1087

Profiling Example with Visual C++ 2022	 1088
Summary	 1090
Exercises	 1090

CHAPTER 30: BECOMING ADEPT AT TESTING	 1093

Quality Control	 1094
Whose Responsibility Is Testing?	 1094
The Life Cycle of a Bug	 1094
Bug-Tracking Tools	 1095

Unit Testing	 1097
Approaches to Unit Testing	 1097
The Unit Testing Process	 1098

Define the Granularity of Your Tests	 1098
Brainstorm the Individual Tests	 1100
Create Sample Data and Results	 1101
Write the Tests	 1101
Run the Tests	 1102

Unit Testing in Action	 1102
Introducing the Microsoft Visual C++ Testing Framework	 1103
Writing the First Test	 1105
Building and Running Tests	 1105
Negative Tests	 1106
Adding the Real Tests	 1107

xxxvii

Contents

Debugging Tests	 1109
Basking in the Glorious Light of Unit Test Results	 1110

Fuzz Testing	 1110
Higher-Level Testing	 1110

Integration Tests	 1110
Sample Integration Tests	 1111
Integration Testing Techniques	 1112

System Tests	 1112
Regression Tests	 1112

Tips For Successful Testing	 1113
Summary	 1114
Exercises	 1114

CHAPTER 31: CONQUERING DEBUGGING	 1117

The Fundamental Law of Debugging	 1118
Bug Taxonomies	 1118
Avoid Bugs	 1118
Plan For Bugs	 1119

Error Logging	 1119
Debug Traces	 1121

Debug Mode	 1122
Ring Buffers	 1126

Assertions	 1129
Crash Dumps	 1131

Debugging Techniques	 1131
Reproducing Bugs	 1132
Debugging Reproducible Bugs	 1133
Debugging Nonreproducible Bugs	 1133
Debugging Regressions	 1134
Debugging Memory Problems	 1134

Categories of Memory Errors	 1135
Tips for Debugging Memory Errors	 1137

Debugging Multithreaded Programs	 1139
Debugging Example: Article Citations	 1140

Buggy Implementation of an ArticleCitations Class	 1140
Testing the ArticleCitations Class	 1143

Lessons from the ArticleCitations Example	 1151
Summary	 1152
Exercises	 1152

xxxviii

Contents

CHAPTER 32: INCORPORATING DESIGN TECHNIQUES
AND FRAMEWORKS	 1155

“I Can Never Remember How To. . .”	 1156
. . .Write a Class	 1156
. . .Derive from an Existing Class	 1158
. . .Write a Lambda Expression	 1158
. . .Use the Copy-and-Swap Idiom	 1159
. . .Throw and Catch Exceptions	 1160
. . .Write a Class Template	 1161
. . .Constrain Template Parameters	 1162
. . .Write to a File	 1162
. . .Read from a File	 1162

There Must Be a Better Way	 1163
Resource Acquisition Is Initialization	 1163
Double Dispatch	 1166

Attempt #1: Brute Force	 1167
Attempt #2: Single Polymorphism with Overloading	 1168
Attempt #3: Double Dispatch	 1169

Mixin Classes	 1171
Using Multiple Inheritance	 1171
Using Class Templates	 1173
Using CRTP	 1174
Using CRTP and Deducing this	 1175

Object-Oriented Frameworks	 1175
Working with Frameworks	 1176
The Model-View-Controller Paradigm	 1176

Summary	 1177
Exercises	 1178

CHAPTER 33: APPLYING DESIGN PATTERNS	 1179

The Strategy Pattern	 1180
Example: A Logging Mechanism	 1180
Implementation of a Strategy-Based Logger	 1181
Using the Strategy-Based Logger	 1182

The Abstract Factory Pattern	 1183
Example: A Car Factory Simulation	 1183
Implementation of an Abstract Factory	 1184
Using an Abstract Factory	 1185

The Factory Method Pattern	 1186
Example: A Second Car Factory Simulation	 1186

xxxix

Contents

Implementation of a Factory Method	 1187
Using a Factory Method	 1189
Other Uses	 1190

Other Factory Patterns	 1191
The Adapter Pattern	 1192

Example: Adapting a Logger Class	 1192
Implementation of an Adapter	 1193
Using an Adapter	 1194

The Proxy Pattern	 1194
Example: Hiding Network Connectivity Issues	 1194
Implementation of a Proxy	 1195
Using a Proxy	 1196

The Iterator Pattern	 1196
The Observer Pattern	 1197

Example: Exposing Events from Subjects	 1197
Implementation of an Observable	 1197
Using an Observer	 1199

The Decorator Pattern	 1200
Example: Defining Styles in Web Pages	 1200
Implementation of a Decorator	 1201
Using a Decorator	 1202

The Chain of Responsibility Pattern	 1202
Example: Event Handling	 1203
Implementation of a Chain of Responsibility	 1203
Using a Chain of Responsibility	 1204

The Singleton Pattern	 1205
Example: A Logging Mechanism	 1206
Implementation of a Singleton	 1206
Using a Singleton	 1208

Summary	 1209
Exercises	 1209

CHAPTER 34: DEVELOPING CROSS-PLATFORM AND
CROSS-LANGUAGE APPLICATIONS	 1211

Cross-Platform Development	 1212
Architecture Issues	 1212

Size of Integers	 1212
Binary Compatibility	 1213
Address Sizes	 1214
Byte Order	 1214

Implementation Issues	 1216

xl

Contents

Compiler Quirks and Extensions	 1216
Library Implementations	 1216
Handling Different Implementations	 1217

Platform-Specific Features	 1217
Cross-Language Development	 1219

Mixing C and C++	 1219
Shifting Paradigms	 1219
Linking with C Code	 1222
Calling C++ Code from C#	 1224
Use C# Code from C++ and C++ from C# with C++/CLI	 1226
Calling C++ Code from Java with JNI	 1227
Calling Scripts from C++ Code	 1229
Calling C++ Code from Scripts	 1230

A Practical Example: Encrypting Passwords	 1230
Calling Assembly Code from C++	 1232

Summary	 1233
Exercises	 1234

PART VI: APPENDICES

APPENDIX A: C++ INTERVIEWS	 1239

APPENDIX B: ANNOTATED BIBLIOGRAPHY	 1265

APPENDIX C: STANDARD LIBRARY HEADER FILES	 1277

APPENDIX D: INTRODUCTION TO UML	 1287

INDEX	 1293

INTRODUCTION

The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the
successor of C with Classes. In 1985, the first edition of The C++ Programming Language book was
released. The first standardized version of C++ was released in 1998, called C++98. In 2003, C++03
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three-year cycle to release updated versions, giv-
ing us C++14, C++17, C++20, and now C++23. All in all, with the release of C++23 in 2023, C++ is
almost 40 years old and still going strong. In most rankings of programming languages in 2023, C++
is in the top four. It is being used on an extremely wide range of hardware, going from small devices
with embedded microprocessors all the way up to multi-rack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms,
performance-critical artificial intelligence (AI) and machine learning (ML) software, components for
self-driving cars, real-time 3-D graphics engines, low-level hardware drivers, entire operating systems,
software stacks for networking equipment, web browsers, and so on. The performance of C++ pro-
grams is hard to match with any other programming language, and as such, it is the de facto language
for writing fast, powerful, and enterprise-class programs. Big tech companies, such as Microsoft,
Facebook, Amazon, Google, and many more, use services written in C++ to run their infrastructure.
As popular as C++ has become, the language can be difficult to grasp in full. There are simple, but
powerful, techniques that professional C++ programmers use that don’t show up in traditional texts,
and there are useful parts of C++ that remain a mystery even to experienced C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real-world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and
providing an example. Professional C++ does not follow this pattern. Instead of giving you just the
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little-known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.

WHO THIS BOOK IS FOR

Even if you have used the language for years, you might still be unfamiliar with the more advanced
features of C++, or you might not be using the full capabilities of the language. Maybe you don’t yet
know all the new features introduced with the latest release, C++23. Perhaps you write competent
C++ code but would like to learn more about design and good programming style in C++. Or maybe
you’re relatively new to C++ but want to learn the “right” way to program from the start. This book
will meet those needs and bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becom-
ing a professional C++ programmer, it assumes that you have some knowledge about programming.

xlii

INTRODUCTION

Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you
have experience in another programming language such as C, Java, or C#, you should be able to pick
up most of what you need from Chapter 1.

In any case, you should have a solid foundation in programming fundamentals. You should know
about loops, functions, and variables. You should know how to structure a program, and you should
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don’t
need to know about object-oriented programming just yet—that is covered in Chapter 5, “Designing
with Classes.”

You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers,
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++23 features
throughout this sixth edition. These features are not just isolated to a few chapters or sections;
instead, examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also empha-
sizes programming methodologies, reusable design patterns, and good programming style. The Profes-
sional C++ methodology incorporates the entire software development process, from designing and
writing code to debugging and working in groups. This approach will enable you to master the C++
language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large-scale
software development.

Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main() function of the program or that all variables should be global—practices that are
generally not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented programming,
and the best ways to use existing libraries. They have also developed an arsenal of useful code and
reusable ideas.

By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features.
You will gain an appreciation for object-oriented design and acquire top-notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work.

xliii

INTRODUCTION

There are many good reasons to make the effort to be a professional C++ programmer as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will
help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can’t guarantee you a
promotion, it certainly won’t hurt.

HOW THIS BOOK IS STRUCTURED

This book is made up of five parts.

Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings,
because strings are used extensively in most examples throughout the book. The last chapter of Part I
explores how to write readable C++ code.

Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about
the importance of design, the object-oriented methodology, and the importance of code reuse.

Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects.
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem.

Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You’ll read about
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object-oriented
design patterns into your own code; and solutions for cross-language and cross-platform code.

The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

xliv

INTRODUCTION

This book is not a reference of every single class, member function, and function available in C++.
The book C++17 Standard Library Quick Reference by Peter Van Weert and Marc Gregoire (Apress,
2019. ISBN: 978-1-4842-4923-9) is a condensed reference to all essential data structures, algorithms,
and functions provided by the C++ Standard Library up until the C++17 standard.1 Appendix B,
“Annotated Bibliography,” lists a couple more references. Two excellent online references are:

➤➤ cppreference.com: You can use this reference online or download an offline version for use
when you are not connected to the Internet.

➤➤ cplusplus.com/reference

When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

The following are additional excellent online resources:

➤➤ github.com/isocpp/CppCoreGuidelines: The C++ Core Guidelines are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of
many person-years of discussion and design across a number of organizations. The aim of
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on
relatively higher-level issues, such as interfaces, resource management, memory management,
and concurrency.

➤➤ github.com/Microsoft/GSL: This is an implementation by Microsoft of the Guidelines
Support Library (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It’s a header-only library.

➤➤ isocpp.org/faq: This is a large collection of frequently asked C++ questions.

➤➤ stackoverflow.com: Search for answers to common programming questions—or ask your
own questions.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout this book.

WARNING  Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

NOTE  Tips, hints, tricks, and asides to the current discussion are placed in boxes
like this one.

1 At the time of this writing, an updated edition called C++23 Standard Library Quick Reference is being worked on,
which is a similar condensed reference but includes all C++20 and C++23 features.

http://cppreference.com
http://cplusplus.com/reference
http://github.com/isocpp/CppCoreGuidelines
http://github.com/Microsoft/GSL
http://isocpp.org/faq
http://stackoverflow.com

xlv

INTRODUCTION

As for styles in the text:

Important words are italic when they are introduced.

Keyboard strokes are shown like this: Ctrl+A.

Filenames and code within the text are shown like so: monkey.cpp.

URLs are shown like this: wiley.com

Code is presented in three different ways:

// Comments in code are shown like this.
In code examples, new and important code is highlighted like this.
Code that's less important in the present context or that has been shown before is
formatted like this.

Paragraphs or sections that are specific to the C++23 standard have a little C++23 icon on the
left, just as this paragraph does. C++11, C++14, C++17, and C++20 features are not marked
with any icon.

WHAT YOU NEED TO USE THIS BOOK

All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor-specific compiler extensions.

Any C++ Compiler
You can use whichever C++ compiler you like. If you don’t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free.

The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.

C++23

COMPILERS AND C++23 FEATURE SUPPORT

This book discusses new features introduced with the C++23 standard. At the time
of this writing, no compilers were fully C++23-compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up
with all new features, and I’m sure it won’t take long before there will be full
C++23-compliant compilers available. You can keep track of which compiler
supports which features at en.cppreference.com/w/cpp/compiler_support.

http://wrox.com
http://en.cppreference.com/w/cpp/compiler_support

xlvi

INTRODUCTION

Example: Microsoft Visual C++ 2022
First, you need to create a project. Start Visual C++ 2022, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File ➪ New ➪ Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows,
and Console, and click Next. Specify a name for the project and a location where to save it and
click Create.

Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, select View ➪ Solution Explorer. A newly created project will con-
tain a file called <projectname>.cpp under the Source Files section in the Solution Explorer. You
can start writing your C++ code in that .cpp file, or if you want to compile source code files from
the downloadable source archive for this book, select the <projectname>.cpp file in the Solution
Explorer and delete it. You can add new files or existing files to a project by right-clicking the project
name in the Solution Explorer and then selecting Add ➪ New Item or Add ➪ Existing Item.

At the time of this writing, Visual C++ 2022 does not yet automatically enable C++23 features. To
enable C++23 features, in the Solution Explorer window, right-click your project and click Properties.
In the Properties window, go to Configuration Properties ➪ General, set the C++ Language Standard
option to ISO C++23 Standard or Preview - Features from the Latest C++ Working Draft, whichever
is available in your version of Visual C++, and click OK.

Finally, select Build ➪ Build Solution to compile your code. When it compiles without errors, you can
run it with Debug ➪ Start Debugging.

NOTE  Microsoft Visual C++ has full support for modules, including the C++23
standard named module std.

Example: GCC
You can create your source code files with any text editor you prefer and save them to a directory. To
compile your code, open a terminal and run the following command, specifying all your .cpp files
that you want to compile:

g++ -std=c++2b -o <executable_name> <source1.cpp> [source2.cpp ...]

COMPILERS AND C++ MODULE SUPPORT

At the time of this writing, not all compilers fully support modules yet; though all
major compilers do, at least partially. This book uses modules everywhere. If your
compiler does not yet support modules, you can convert modularized code to
non-modularized code, as explained briefly in Chapter 11, “Modules, Header Files,
and Miscellaneous Topics.”

xlvii

INTRODUCTION

The -std=c++2b option is required to tell GCC to enable C++23 features. This option will change to
-std=C++23 once GCC is fully C++23-compliant.

Module Support
Support for modules in GCC is enabled with the -fmodules-ts option.

At the time of this writing, GCC does not yet support the C++23 standard named module std, intro-
duced in Chapter 1. To make such code compile, you have to replace import std; declarations with
import declarations of individual Standard Library headers. Once that is done, import declarations
of Standard Library headers, such as the following, require you to precompile them:

import <iostream>;

Here is an example of precompiling <iostream>:

g++ -std=c++2b -fmodules-ts -xc++-system-header iostream

As an example, the AirlineTicket code from Chapter 1 uses modules. To compile it with GCC, first
replace the use of std::println() with std::cout as GCC does not yet support <print> function-
ality at the time of this writing. After that, replace the import std; declarations with the appropriate
import declarations, <string> and <iostream> for this example. You can find the adapted code in
the Examples\Ch00\AirlineTicket directory in the downloadable source code archive.

Then, compile the two standard headers <iostream> and <string>:

g++ -std=c++2b -fmodules-ts -xc++-system-header iostream
g++ -std=c++2b -fmodules-ts -xc++-system-header string

Compile the module interface file:

g++ -std=c++2b -fmodules-ts -c -x c++ AirlineTicket.cppm

Finally, compile the application itself:

g++ -std=c++2b -fmodules-ts -o AirlineTicket AirlineTicket.cpp
AirlineTicketTest.cpp AirlineTicket.o

When it compiles without errors, you can run it as follows:

./AirlineTicket

NOTE  The process of compiling C++ code using C++ modules with GCC might
change in the future. Also, support for the C++23 standard named module std
will be added. In that case, please consult the GCC documentation for an updated
procedure on how to compile such code.

C++23’s Support for Printing Ranges
Chapter 2, “Working with Strings and String Views,” explains that you can easily print the entire con-
tents of Standard Library containers, such as std::vector, to the screen. This is a new feature since
C++23 and not all compilers support this yet at the time of this writing.

xlviii

INTRODUCTION

As an example, Chapter 2 explains that you can write the contents of an std::vector as follows.
Don’t worry if you don’t understand all the syntax yet, you will at the end of Chapter 2.

std::vector values { 11, 22, 33 };
std::print("{:n}", values);

This outputs:

11, 22, 33

If your compiler does not yet support this C++23 feature to print the contents of a container using
std::print(), then you can convert the second line of code to the following:

for (const auto& value : values) { std::cout << value << ", "; }

This outputs:

11, 22, 33,

Again, don’t worry if you don’t understand the syntax yet. All will be clear at the end of Chapter 2.

READER SUPPORT FOR THIS BOOK

The following sections describe different options to get support for this book.

Companion Download Files
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the
code manually because it greatly benefits the learning process and your memory. All of the source
code used in this book is available for download at www.wiley.com/go/proc++6e or from GitHub
at github.com/Professional-CPP/edition-6.

NOTE  Because many books have similar titles, you may find it easiest to search by
ISBN; for this book, the ISBN is 978-1-394-19317-2.

Once you’ve downloaded the code, just decompress it with your favorite decompression tool.

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

http://www.wiley.com/go/proc++6e
http://github.com/Professional-CPP/edition-6

PROFESSONL

Ce+

