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Why Machines Learn

“Some books about the development of neural networks describe the
underlying mathematics while others describe the social history. This book
presents the mathematics in the context of the social history. It is a
masterpiece. The author is very good at explaining the mathematics in a way
that makes it available to people with only a rudimentary knowledge of the
field, but he is also a very good writer who brings the social history to life.”

—GEOFFREY HINTON, deep learning pioneer, Turing Award winner,
former VP at Google, and professor emeritus at the University of Toronto

“After just a few minutes of reading Why Machines Learn, you’ll feel your
own synaptic weights getting updated. By the end you will have achieved
your own version of deep learning—with deep pleasure and insight along the
way.”

—STEVEN STROGATZ, New York Times bestselling author of Infinite
Powers and professor of mathematics at Cornell University

“If you were looking for a way to make sense of the AI revolution that is well
under way, look no further. With this comprehensive yet engaging book, Anil
Ananthaswamy puts it all into context, from the origin of the idea and its
governing equations to its potential to transform medicine, quantum physics
—and virtually every aspect of our life. An essential read for understanding
both the possibilities and limitations of artificial intelligence.”

—SABINE HOSSENFELDER, physicist and New York Times bestselling
author of Existential Physics: A Scientist’s Guide to Life’s Biggest Questions

“Why Machines Learn is a masterful work that explains—in clear, accessible,
and entertaining fashion—the mathematics underlying modern machine
learning, along with the colorful history of the field and its pioneering



researchers. As AI has increasingly profound impacts in our world, this book
will be an invaluable companion for anyone who wants a deep
understanding of what’s under the hood of these often inscrutable
machines.”
—MELANIE MITCHELL, author of Artificial Intelligence and professor at the

Santa Fe Institute

“Generative AI, with its foundations in machine learning, is as fundamental
an advance as the creation of the microprocessor, the internet, and the
mobile phone. But almost no one, outside of a handful of specialists,
understands how it works. Anil Ananthaswamy has removed the mystery by
giving us a gentle, intuitive, and human-oriented introduction to the math
that underpins this revolutionary development.”

—PETER E. HART, AI pioneer, entrepreneur, and co-author of Pattern
Classification

“Anil Ananthaswamy’s Why Machines Learn embarks on an exhilarating
journey through the origins of contemporary machine learning. With a
captivating narrative, the book delves into the lives of influential figures
driving the AI revolution while simultaneously exploring the intricate
mathematical formalism that underpins it. As Anil traces the roots and
unravels the mysteries of modern AI, he gently introduces the underlying
mathematics, rendering the complex subject matter accessible and exciting
for readers of all backgrounds.”

—BJÖRN OMMER, professor at the Ludwig Maximilian University of
Munich and leader of the original team behind Stable Diffusion
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to teachers everywhere, sung and unsung

Whatever we do, we have to make our life vectors.
Lines with force and direction.

—LIAM NEESON AS FBI AGENT MARK FELT IN THE 2017 MOVIE

OF THE SAME NAME
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Prologue

uried on this page of the July 8, 1958, issue of The New York Times was
a rather extraordinary story. The headline read, “New Navy Device

Learns by Doing: Psychologist Shows Embryo of Computer Designed to
Read and Grow Wiser.” The opening paragraph raised the stakes: “The Navy
revealed the embryo of an electronic computer today that it expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its
existence.”

With hindsight, the hyperbole is obvious and embarrassing. But The New
York Times wasn’t entirely at fault. Some of the over-the-top talk also came
from Frank Rosenblatt, a Cornell University psychologist and project
engineer. Rosenblatt, with funding from the U.S. Office of Naval Research,
had invented the perceptron, a version of which was presented at a press
conference the day before the New York Times story about it appeared in
print. According to Rosenblatt, the perceptron would be the “first device to
think as the human brain” and such machines might even be sent to other
planets as “mechanical space explorers.”

None of this happened. The perceptron never lived up to the hype.
Nonetheless, Rosenblatt’s work was seminal. Almost every lecturer on
artificial intelligence (AI) today will harken back to the perceptron. And
that’s justified. This moment in history—the arrival of large language models
(LLMs) such as ChatGPT and its ilk and our response to it—which some have
likened to what it must have felt like in the 1910s and ’20s, when physicists
were confronted with the craziness of quantum mechanics, has its roots in
research initiated by Rosenblatt. There’s a line in the New York Times story



that only hints at the revolution the perceptron set in motion: “Dr.
Rosenblatt said he could explain why the machine learned only in highly
technical terms” (italics mine). The story, however, had none of the “highly
technical” details.

This book does. It tackles the technical details. It explains the elegant
mathematics and algorithms that have, for decades, energized and excited
researchers in “machine learning,” a type of AI that involves building
machines that can learn to discern patterns in data without being explicitly
programmed to do so. Trained machines can then detect similar patterns in
new, previously unseen data, making possible applications that range from
recognizing pictures of cats and dogs to creating, potentially, autonomous
cars and other technology. Machines can learn because of the extraordinary
confluence of math and computer science, with more than a dash of physics
and neuroscience added to the mix.

Machine learning (ML) is a vast field populated by algorithms that
leverage relatively simple math that goes back centuries, math one learns in
high school or early in college. There’s, of course, elementary algebra.
Another extremely important cornerstone of machine learning is calculus,
co-invented by no less a polymath than Isaac Newton. The field also relies
heavily on the work of Thomas Bayes, the eighteenth-century English
statistician and minister who gave us the eponymous Bayes’s theorem, a key
contribution to the field of probability and statistics. The work of German
mathematician Carl Friedrich Gauss on the Gaussian distribution (and the
bell-shaped curve) also permeates machine learning. Then there’s linear
algebra, which forms the backbone of machine learning. The earliest
exposition of this branch of mathematics appears in a two-thousand-year-
old Chinese text, Nine Chapters on the Mathematical Art. The modern
version of linear algebra has its roots in the work of many mathematicians,
but mainly Gauss, Gottfried Wilhelm Leibniz, Wilhelm Jordan, Gabriel
Cramer, Hermann Günther Grassmann, James Joseph Sylvester, and Arthur
Cayley.



By the mid-1850s, some of the basic math that would prove necessary to
building learning machines was in place, even as other mathematicians
continued developing more relevant mathematics and birthed and advanced
the field of computer science. Yet, few could have dreamed that such early
mathematical work would be the basis for the astounding developments in
AI over the past half century, particularly over the last decade, some of
which may legitimately allow us to envision a semblance of the kind of future
Rosenblatt was overoptimistically foreshadowing in the 1950s.

This book tells the story of this journey, from Rosenblatt’s perceptron to
modern-day deep neural networks, elaborate networks of computational
units called artificial neurons, through the lens of key mathematical ideas
underpinning the field of machine learning. It eases gently into the math and
then, ever so slowly, ratchets up the difficulty, as we go from the relatively
simple ideas of the 1950s to the somewhat more involved math and
algorithms that power today’s machine learning systems.

Hence, we will unabashedly embrace equations and concepts from at
least four major fields of mathematics—linear algebra, calculus, probability
and statistics, and optimization theory—to acquire the minimum theoretical
and conceptual knowledge necessary to appreciate the awesome power we
are bestowing on machines. It is only when we understand the inevitability
of learning machines that we will be prepared to tackle a future in which AI
is ubiquitous, for good and for bad.

Getting under the mathematical skin of machine learning is crucial to our
understanding of not just the power of the technology, but also its
limitations. Machine learning systems are already making life-altering
decisions for us: approving credit card applications and mortgage loans,
determining whether a tumor is cancerous, predicting the prognosis for
someone in cognitive decline (will they go on to get Alzheimer’s?), and
deciding whether to grant someone bail. Machine learning has permeated
science, too: It is influencing chemistry, biology, physics, and everything in
between. It’s being used in the study of genomes, extrasolar planets, the
intricacies of quantum systems, and much more. And as of this writing, the



world of AI is abuzz with the advent of large language models such as
ChatGPT. The ball has only just gotten rolling.

We cannot leave decisions about how AI will be built and deployed solely
to its practitioners. If we are to effectively regulate this extremely useful, but
disruptive and potentially threatening, technology, another layer of society—
educators, politicians, policymakers, science communicators, or even
interested consumers of AI—must come to grips with the basics of the
mathematics of machine learning.

In her book Is Math Real?, mathematician Eugenia Cheng writes about
the gradual process of learning mathematics: “It can…seem like we’re taking
very small steps and not getting anywhere, before suddenly we look behind
us and discover we’ve climbed a giant mountain. All these things can be
disconcerting, but accepting a little intellectual discomfort (or sometimes a
lot of it) is an important part of making progress in math.”

Fortunately, the “intellectual discomfort” in store for us is eminently
endurable and more than assuaged by the intellectual payoff, because
underlying modern ML is some relatively simple and elegant math—a notion
that’s best illustrated with an anecdote about Ilya Sutskever. Today,
Sutskever is best known as the co-founder of OpenAI, the company behind
ChatGPT. More than a decade ago, as a young undergraduate student
looking for an academic advisor at the University of Toronto, Sutskever
knocked on Geoffrey Hinton’s door. Hinton was already a well-known name
in the field of “deep learning,” a form of machine learning, and Sutskever
wanted to work with him. Hinton gave Sutskever some papers to read, which
he devoured. He remembers being perplexed by the simplicity of the math,
compared to the math and physics of his regular undergrad coursework. He
could read these papers on deep learning and understand powerful concepts.
“How can it be that it’s so simple…so simple that you can explain it to high
school students without too much effort?” he told me. “I think that’s actually
miraculous. This is also, to me, an indication that we are probably on the
right track. [It can’t] be a coincidence that such simple concepts go so far.”



Of course, Sutskever already had sophisticated mathematical chops, so
what seemed simple to him may not be so for most of us, including me. But
let’s see.

This book aims to communicate the conceptual simplicity underlying ML
and deep learning. This is not to say that everything we are witnessing in AI
now—in particular, the behavior of deep neural networks and large language
models—is amenable to being analyzed using simple math. In fact, the
denouement of this book leads us to a place that some might find
disconcerting, though others will find it exhilarating: These networks and
AIs seem to flout some of the fundamental ideas that have, for decades,
underpinned machine learning. It’s as if empirical evidence has broken the
theoretical camel’s back in the same way experimental observations of the
material world in the early twentieth century broke classical physics; we
need something new to make sense of the brave new world awaiting us.

As I did the research for this book, I observed a pattern to my learning
that reminded me of the way modern artificial neural networks learn: With
each pass the algorithm makes through data, it learns more about the
patterns that exist in that data. One pass may not be enough; nor ten; nor a
hundred. Sometimes, neural networks learn over tens of thousands of
iterations through the data. This is indeed the way I grokked the subject in
order to write about it. Each pass through some corner of this vast base of
knowledge caused some neurons in my brain to make connections, literally
and metaphorically. Things that didn’t make sense the first or second time
around eventually did upon later passes.

I have used this technique to help readers make similar connections: I
found myself repeating ideas and concepts over the course of writing this
book, sometimes using the same phrasing or, at times, a different take on the
same concept. These repetitions and rephrasings are intentional: They are
one way that most of us who are not mathematicians or practitioners of ML
can come to grips with a paradoxically simple yet complex subject. Once an
idea is exposed, our brains might see patterns and make connections when



encountering that idea elsewhere, making more sense of it than would have
been possible at first blush.

I hope your neurons enjoy this process as much as mine did.
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C H A P T E R  1

Desperately Seeking Patterns

hen he was a child, the Austrian scientist Konrad Lorenz, enamored
by tales from a book called The Wonderful Adventures of Nils—the

story of a boy’s adventures with wild geese written by the Swedish novelist
and winner of the Nobel Prize for Literature, Selma Lagerlöf—“yearned to
become a wild goose.” Unable to indulge his fantasy, the young Lorenz
settled for taking care of a day-old duckling his neighbor gave him. To the
boy’s delight, the duckling began following him around: It had imprinted on
him. “Imprinting” refers to the ability of many animals, including baby
ducks and geese (goslings), to form bonds with the first moving thing they
see upon hatching. Lorenz would go on to become an ethologist and would
pioneer studies in the field of animal behavior, particularly imprinting. (He
got ducklings to imprint on him; they followed him around as he walked,
ran, swam, and even paddled away in a canoe.) He won the Nobel Prize for
Physiology or Medicine in 1973, jointly with fellow ethologists Karl von
Frisch and Nikolaas Tinbergen. The three were celebrated “for their
discoveries concerning organization and elicitation of individual and social
behavior patterns.”

Patterns. While the ethologists were discerning them in the behavior of
animals, the animals were detecting patterns of their own. Newly hatched
ducklings must have the ability to make out or tell apart the properties of
things they see moving around them. It turns out that ducklings can imprint
not just on the first living creature they see moving, but on inanimate things
as well. Mallard ducklings, for example, can imprint on a pair of moving
objects that are similar in shape or color. Specifically, they imprint on the



relational concept embodied by the objects. So, if upon birth the ducklings
see two moving red objects, they will later follow two objects of the same
color (even if those latter objects are blue, not red), but not two objects of
different colors. In this case, the ducklings imprint on the idea of similarity.
They also show the ability to discern dissimilarity. If the first moving objects
the ducklings see are, for example, a cube and a rectangular prism, they will
recognize that the objects have different shapes and will later follow two
objects that are different in shape (a pyramid and a cone, for example), but
they will ignore two objects that have the same shape.

Ponder this for a moment. Newborn ducklings, with the briefest of
exposure to sensory stimuli, detect patterns in what they see, form abstract
notions of similarity/dissimilarity, and then will recognize those abstractions
in stimuli they see later and act upon them. Artificial intelligence researchers
would offer an arm and a leg to know just how the ducklings pull this off.

While today’s AI is far from being able to perform such tasks with the
ease and efficiency of ducklings, it does have something in common with the
ducklings, and that’s the ability to pick out and learn about patterns in data.
When Frank Rosenblatt invented the perceptron in the late 1950s, one
reason it made such a splash was because it was the first formidable “brain-
inspired” algorithm that could learn about patterns in data simply by
examining the data. Most important, given certain assumptions about the
data, researchers proved that Rosenblatt’s perceptron will always find the
pattern hidden in the data in a finite amount of time; or, put differently, the
perceptron will converge upon a solution without fail. Such certainties in
computing are like gold dust. No wonder the perceptron learning algorithm
created such a fuss.

But what do these terms mean? What are “patterns” in data? What does
“learning about these patterns” imply? Let’s start by examining this table:



Each row in the table is a triplet of values for variables x1, x2, and y.
There’s a simple pattern hidden in this data: In each row, the value of y is
related to the corresponding values of x1 and x2. See if you can spot it before
reading further.

In this case, with a pencil, paper, and a little effort one can figure out that
y equals x1 plus two times x2.

y = x1 + 2x2

A small point about notation: We are going to dispense with the
multiplication sign (“×”) between two variables or between a constant and a
variable. For example, we’ll write

2 × x2 as 2x2 and x1 × x2 as x1x2

Ideally, we should write 2x2 as 2x2 and x1x2 as x1 x2, with the variables

subscripted. But we’ll dispense with the subscripts, too, unless it becomes
absolutely necessary to use them. (Purists will cringe, but this method helps
keep our text less cluttered and easy on the eye; when we do encounter
subscripts, read xi as “x sub-i.”) So, keep this in mind: If there’s a symbol

such as “x” followed by a digit such as “2,” giving us x2, take the entire
symbol to mean one thing. If a symbol (say, x or x2) is preceded by a number
(say, 9), or by another symbol (say, w1), then the number and the symbol, or
the two symbols, are being multiplied. So:


