






Efficient Node.js

A Beyond-the-Basics Guide

Samer Buna



Efficient Node.js

by Samer Buna

Copyright © 2025 Samer Buna. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editor: Jeff Bleiel

Production Editor: Gregory Hyman

Copyeditor: Miah Sandvik

Proofreader: Stephanie English

Indexer: Judith McConville

Interior Designer: David Futato



Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

January 2025: First Edition

 

Revision History for the First Edition

2025-01-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098145194 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Efficient
Node.js, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author and do not represent
the publisher’s views. While the publisher and the author have used good
faith efforts to ensure that the information and instructions contained in this
work are accurate, the publisher and the author disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

978-1-098-14519-4



[LSI]



Preface

I’ve been using Node.js since its early days, and it has never failed me. With
every piece of code I’ve written for Node, my appreciation for it has only
increased. With every new skill I’ve developed for Node, I’ve felt the
productivity gain.

Node.js is nothing short of revolutionary. It’s a great platform with
impressive power. Once you get comfortable with its fundamentals and how it
handles asynchrony, the rest is easy. You’ll get better with it quickly, and
you’ll be able to build and scale backend services faster than you’d imagine.

 

Who Should Read This Book

This book is my attempt at helping you learn Node.js efficiently. It naturally
dips into a few JavaScript concepts, but in general, you need a good basic
understanding of the JavaScript language to get the most value out of this
book.

If you’re not comfortable working with JavaScript objects, functions,
operators, and iterators, reading an introductory book about JavaScript
before this book would help.

This is the book that I wished existed when I started learning Node.js. At that
time, I was mainly focusing on the frontend. Naturally, this book is a good fit
for a frontend developer wanting to expand their experience to the backend.

 



Why I Wrote This Book

When it comes to learning Node.js, many tutorials, books, and courses tend
to focus on the libraries and tools available within the Node.js ecosystem,
rather than the Node.js runtime environment itself. They prioritize teaching
how to utilize popular Node.js libraries and frameworks, instead of starting
from the native capabilities of Node.js.

This approach is understandable because Node.js is a low-level runtime
environment. It does not offer comprehensive solutions but rather a
collection of small essential modules that makes creating solutions easier and
faster. For example, a full-fledged web server will have options like serving
static files (like images, CSS files, etc.). With the Node.js built-in

http module, you can build a web server that serves binary data, and with the
Node.js built-in fs module, you can read the content of a file from the

filesystem. You can combine

both of these features to serve static assets by using your own JavaScript
code. There’s no built-in Node.js way to serve static assets under a web
server.

Popular Node.js libraries that are not part of Node.js itself (such as
Express.js, Next.js, and many others with .js in their names) aim to provide
nearly complete solutions within specific domains. For example, Express.js
specializes in creating and running a web server (and serving static assets,
and many other neat features). Practically, most developers will not be using
Node.js on its own, so it makes sense for educational materials to focus on the
libraries offering comprehensive solutions, so learners can skip to the good
parts. The common thinking here is that only developers whose job is to write
these libraries need to understand the underlying base layer of Node.js.



However, I would argue that a solid understanding of the built-in power of
Node.js is essential before utilizing any of its external libraries and tools.
Having a deep understanding of Node.js allows developers to make informed
decisions when choosing which libraries to use and how to use them
effectively. This book is my attempt to prioritize first learning the native
capabilities of Node.js and then using that knowledge to efficiently utilize the
powerful libraries and tools in its ecosystem.

 

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,

environment variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

 



TI P

This element signifies a tip or suggestion.

 

N O TE

This element signifies a general note.



WA R N I N G

This element indicates a warning or caution.

 

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at https://oreil.ly/EfficientNodeCode.

If you have a technical question or a problem using the code examples, please
send email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or
distributing examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Efficient Node.js by Samer Buna (O’Reilly). Copyright 2025 Samer Buna,
978-1-098-14519-4.”



If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

 

O’Reilly Online Learning

 

N O TE

For more than 40 years, O’Reilly Media has provided technology and business training,

knowledge, and insight to help companies succeed.

 

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses,
in-depth learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other publishers. For
more information, visit https://oreilly.com.

 

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.



1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/EfficientNodeJS.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

 

Acknowledgments

I am deeply grateful to the many incredible people whose efforts helped shape
and refine this book. A heartfelt thank you to the O’Reilly Media team for



their patience, guidance, and unwavering support throughout the writing
process. I am especially thankful to Jeff Bleiel, my development editor, whose
thoughtful insights greatly improved the clarity and presentation of this work.
To Amanda Quinn, my editor; Miah Sandvik, my copyeditor; and Gregory
Hyman, my production editor: your contributions are greatly appreciated.

I also want to thank the talented software developers who reviewed drafts of
this book and provided invaluable feedback. Your suggestions were
instrumental in improving the content. Special thanks to Hazem Twair for
spotting issues I would have missed, and to Tamas Piros and Aniket
Wattamwar for their meticulous technical proofreading. Your input made this
book stronger and more polished.

To my mentors and peers in the Node.js community: I am forever grateful for
your wisdom, inspiration, and encouragement.

To everyone who contributed: your dedication and expertise have elevated
this book far beyond what I could have achieved on my own. Thank you for
your help—it means the world to me!





Chapter 1. Node Fundamentals
Node is an open source, cross-platform runtime environment in which
developers can create backend services using the JavaScript language. It’s
built on top of V8, the JavaScript engine of the Chrome web browser, and it
has dozens of built-in modules that are designed to be used asynchronously
with an event-driven approach that’s commonly known as the non-blocking
model. Node developers can use events and handler functions to efficiently
perform multiple operations in parallel, without having to deal with the
complexity of multiple processes and threads.

There’s a lot to unpack here, and that’s what we will be doing in this first
chapter. We’ll start with an introduction to Node, how it works, and why it’s
popular. We’ll learn the basics of the Node CLI, how to use modules and
packages, and how to perform synchronous and asynchronous operations.
We’ll discuss the fundamentals of Node’s event-driven, non-blocking model
and learn how callbacks, promises, and events can be used to handle the
result of an asynchronous operation.

 

N O TE

Throughout the book, I use the term Node instead of Node.js for brevity. The official name of

the runtime environment is Node.js, but referring to it as just Node is common.

 

Introducing Node



Ryan Dahl started the Node project in 2009 after he was inspired by the
performance of the V8 JavaScript engine in the Google Chrome web browser.
V8 uses an event-driven model, which makes it efficient at handling
concurrent connections and requests. Ryan wanted to bring this same high-
performance, event-driven architecture to server-side applications. The
event-driven model is the first and most important concept you need to
understand about Node (and the V8 engine as well). I’ll explain it briefly in
this chapter, and we’ll expand on it in Chapter 3.

 

TI P

I decided to give Node a spin and learn more about it after watching the presentation Ryan

Dahl gave to introduce it. I think you’ll benefit by starting there as well. Search YouTube for

“Ryan Dahl introduction to Node”. Node has changed significantly since then, so don’t focus

on the examples but rather the concepts and explanations.

 

In its core, Node enables developers to use the JavaScript language on any
machine without needing a web browser. Node is usually defined as
“JavaScript on backend servers.” Before Node, that was not a common or
easy thing. JavaScript was mainly a frontend thing.

However, this definition isn’t completely accurate. Node offers a lot more
than the ability to execute JavaScript on servers. In fact, the actual execution
of JavaScript is done by the V8 JavaScript engine, not Node. Node is just an
interface to V8 when it comes to executing JavaScript code.



V8 is Google’s open source JavaScript engine that can compile and execute
JavaScript code. It’s used in Node as well as in Chrome and a few other
browsers. It’s also used in Deno, the new JavaScript runtime that was created
by Ryan Dahl in 2018.

 

N O TE

There are other JavaScript engines, like SpiderMonkey, which is used by Firefox, and

JavaScriptCore, which is used by the Safari web browser and in Bun, an all-in-one JavaScript

runtime, package manager, and bundler.

 

Node is better defined as a server runtime environment that wraps V8 and
provides modules to help developers build and run efficient software
applications with JavaScript.

The key word in this definition is efficient. Node adopts and expands on the
same event-driven model that V8 has. Most of Node’s built-in modules are
event-driven and can be used asynchronously without blocking the main
thread of execution that your code runs in.

A thread is basically a small process within a larger one. A process can create
multiple threads of execution that are each associated with a CPU core.
Threads can share memory and resources within the larger process.

In multithreaded programming, slow operations are executed in separate
threads. In Node, you get a single main thread for your code, and all the slow
operations are executed outside of that main thread, asynchronously.



You need to read the content of an external file? You can do that
asynchronously without blocking the single main thread. You need to start a
web server? Work with network sockets? Parse, compress, or encrypt data?
Every low-level slow operation has an asynchronous API for you to use
without blocking your other operations.

You don’t need to deal with multiple threads to do things in parallel in Node.
You don’t waste resources on manual threads being idle waiting on slow
operations. You code in one thread and use asynchronous APIs, and Node
takes care of executing the asynchronous operations efficiently outside of
your main thread.

Any code that needs to be executed after a slow operation can be managed
with events and event handlers. An event is a signal that something has
happened and a certain action needs to be performed. The action can be
defined in an event handler function that gets associated with the event.
Every time the event is signaled, its handler function will be executed.

That’s basically the gist of what event-driven means.

We’ll expand on these important concepts once we learn the basics of running
Node code and using its modules and packages.

The JavaScript Language

After considering programming languages like Python, Lua, and Haskell,
Ryan Dahl picked the JavaScript language for Node because it was a good fit.
It’s simple, flexible, and popular, but more importantly, JavaScript functions
are first-class citizens that we can treat like any other objects (numbers or
strings). We can store them in variables, pass them to other functions via
arguments, and even return them from other functions, all while preserving


