

Mathematics for Engineers

Francesc Pozo Montero, Núria Parés Mariné, and Yolanda Vidal Seguí

A Chapman & Hall Book

Mathematics for Engineers

Mathematics for Engineers offers a comprehensive treatment of the core mathematical topics required for a modern engineering degree. The book begins with an introduction to the basics of mathematical reasoning and builds up the level of complexity as it progresses. The approach of the book is to build understanding through engagement, with numerous exercises and illuminating examples throughout the text designed to foster a practical understanding of the topics under discussion.

Features

- Replete with examples, exercises, and applications
- Suitable for engineers but also for other students of the quantitative sciences
- Written in an engaging and accessible style while preserving absolute rigor.

Mathematics for Engineers

Francesc Pozo Montero Núria Parés Mariné Yolanda Vidal Seguí

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK Designed cover image: Francesc Pozo Montero

First edition published 2025 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Francesc Pozo Montero, Núria Parés Mariné, and Yolanda Vidal Seguí

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Centre, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC, please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-50544-2 (hbk) ISBN: 978-1-032-50805-4 (pbk) ISBN: 978-1-003-39973-5 (ebk)

DOI: 10.1201/9781003399735

Typeset in Latin Modern font by KnowledgeWorks Global Ltd.

Publisher's note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: www.Routledge.com/9781032505442

With gratitude to our students and colleagues, whose curiosity and insights enriched this work, and to our families and friends, whose support and encouragement made this book possible.

Contents

Pı	Preface xi			
A	Author Biographies xiii			
Ι	Mathematical Reasoning			
1 Introduction to Mathematical Reasoning				
	1.1	Mathematical Reasoning	3	
	1.2	Is It Easy to Make a Mathematical Proof?	5	
	1.3	Methods of Proof	5	
	1.4	Direct Proof	6	
	1.5	Proof by Contrapositive	9	
	1.6	Proof by Contradiction or Reduction to Absurdity	10	
	1.7	Proof by Counterexample	11	
	1.8	Proof by Induction	12	
	1.9	Solved Problems (Direct Proof)	16	
	1.10	Solved Problems (Proof by Contrapositive)	18	
	1.11	Solved Problems (Proof by Contradiction or Reduction to Absurdity)	20	
	1.12	Solved Problems (Proof by Induction)	23	
II	T	he Set of Complex Numbers	33	
2	Nur	nerical Sets. The Set of Complex Numbers	35	
	2.1	Numerical Sets	35	
		2.1.1 The Set of Natural Numbers	35	
		2.1.2 The Set of Integers	37	
		2.1.3 The Set of Rational Numbers	38	
		2.1.4 The Set of Real Numbers	39	
	2.2 The Set of Complex Numbers		41	
		2.2.1 Introductory Example	42	
	2.3	Representation of Complex Numbers: Standard Form	44	
	2.4	Operations with Complex Numbers	46	
		2.4.1 Addition and Subtraction of Complex Numbers in Standard Form	46	
		2.4.2 Product of Complex Numbers in Standard Form	47	
		2.4.3 The Conjugate of a Complex Number	49	
		2.4.3.1 The Product of a Complex Number by Its Conjugate	50	
		2.4.4 Division of Complex Numbers in Standard Form	50	
	2.5	Polar Form: An Alternative Representation of Complex Numbers	50	
	2.0	2.5.1 From Standard to Polar Form	57	
		2.5.1 From Polar to Standard Form	50	
		2.5.2 Arithmetic Operations with Complex Numbers in Polar Form	61	
	2.6	The Exponential of a Complex Number	62	

	2.6.1 Operations of Complex Numbers in Exponential Form	66
2.7	Trigonometric Functions in Terms of the Complex Exponential	68
2.8	Roots of Complex Numbers	71
2.9	The Logarithm of a Complex Number	75
2.10	Applications of Complex Numbers to AC Circuits	79

III Differential Calculus

151

2	Fun	ations	Limits and Continuity	152
9	2 1	Pool E	unations of a Real Variable	154
	0.1	2 1 1	Concept of Function Injectivity Surjectivity Bijectivity	154
		319	Important Sets	155
		313	Invertible Functions	157
		3.1.0	Restriction of a Function	158
	3.2	Basic 1	Functions	159
	3.3	Algebr	aic Operations with Functions	164
	3.4	Compo	osite Function	165
	3.5	Inverse	e Function	166
	3.6	Limit	of a Function at a Point	167
		3.6.1	Intuitive Idea	167
		3.6.2	Accumulation Point	168
		3.6.3	Formal Definition	170
		3.6.4	Geometric Interpretation of the Formal Definition of Limit	171
		3.6.5	Calculating Limits Using the Definition	171
		3.6.6	Properties of the Limit of a Function at a Point	177
	3.7	Calcul	ation of Limits in Algebraic Form	180
		3.7.1	Calculation of Limits of Polynomials and Rational Functions	184
		3.7.2	Calculation of Limits of Roots of Polynomials	187
		3.7.3	Calculation of Limits of Rational Functions of the Type $<\!\!<\!0/0\!\!>$	187
		3.7.4	Calculating Limits of Functions through Rationalization	188
		3.7.5	Calculating Limits through Criteria	192
	3.8	One-Si	ded Limits	195
		3.8.1	Intuitive Idea	195
		3.8.2	Formal Definition	196
	3.9	Extens	sion of the Concept of Limit (Infinite Limit, Limit at Infinity)	198
		3.9.1	Limit of a Function at Infinity	199
		3.9.2	Infinite Limits	204
		3.9.3	Infinite Limit at Infinity	208
	0.40	3.9.4	Algebra of Infinite Limits	209
	3.10	Indete	rminate Forms	211
	3.11	Local	Equivalence of Functions	212
		3.11.1	Equivalent Infinitesimals and Infinites	214
	9.10	3.11.2 D	Orders of Infinity	218
	3.12	Resolv	ing Indeterminate Forms	218
	3.13	Contin	Our function at a Point	229
		0.10.1 9 19 0	Continuity Field	232
		0.10.2 2 1 2 2	Continuity in Open and Closed Intervals	202 094
		0.10.0 2 12 /	Classification of Discontinuities of a Function	204 225
	211	0.10.4 Theory	me on Continuous Functions	∠əə <u>२२</u> २
	0.14 2.15	Solved	Problems (Functions)	200 242
	9.19	Sorved		24 2

	3.16	Solved Problems (Limits) 2	253	
	3.17	Solved Problems (Continuity) 2	280	
4	Diff	erentiation of Functions of a Real Variable 2	98	
	4.1	Derivative of a Function at a Point	299	
		4.1.1 Geometric Interpretation	299	
		4.1.2 Formal Definition of the Derivative	301	
	4.2	Domain of Differentiability	303	
	4.3	The Derivative Function	304	
		4.3.1 Calculating the Derivatives of Elementary Functions	304	
	4.4	Differentiability and Continuity	811	
	4.5	Lateral Derivatives	811	
	4.6	Infinite Derivative 3	313	
	4 7	Derivative and Operations with Functions	814	
	4.8 Chain Rule			
	1.0	4.8.1 Derivative of the Inverse Function 3	819	
	49	Techniques for Calculating Derivatives	221	
	4 10	Extreme Values	321	
	<i>A</i> 11	Mean Value Theorem	20	
	4.11	4 11.1 Monotone Functions and the First Derivative Test	20	
	1 1 9	Higher Order Derivatives	128	
	4.12	Taylor's Theorem	211	
	4.10	4 13.1 Applications of the Taylor Series	250	
	1 1 1	L'Hôpital's Bulos	255	
	4.14	Solved Problems (Differentiability)	265	
	4.16	Solved Problems (Entremos)	288	
	4.10	Solved Problems (Optimization)	200	
	4.17	Solved Problems (Optimization)	111	
	4.10	Solved Problems (Taylor)	118	
	1.10		10	
IV		ntegral Calculus 42	25	
5	Inte	gration 4	27	
	5.1	Primitive of a Function	128	
	5.2	Indefinite Integral of a Function	129	
	5.3	Calculus of Primitives	130	
		5.3.1 Immediate Primitives	130	
		5.3.2 Almost-immediate Primitives	131	
		5.3.3 Method of Integration by Parts	132	
		5.3.4 Variable Change Method	135	
		5.3.5 Antiderivatives of Rational Functions	136	
	5.4	Riemann Integral	145	
		5.4.1 Intuitive Idea	145	
		5.4.2 Formal Definition	148	
		5.4.3 Properties of the Riemann Integral	153	
		5.4.4 Fundamental Theorem of Calculus	155	
	5.5	Area Between Two Curves	158	
5.5.1 Area Bounded by Two Bounded and Integrable Functions				
	Positive and One Strictly Greater Than the Other			
		5.5.2 Area Bounded by Two Bounded and Integrable Functions Where One		
		is Strictly Greater Than the Other	159	

		5.5.3	Area Bounded by Any Two Bounded and Integrable Functions	461
		5.5.4	Integration with Respect to the Variable $y \ldots \ldots \ldots \ldots$	464
	5.6	Applic	ations of the Integral	467
		5.6.1	Average Value of a Function	467
		5.6.2	Calculation of Volumes	468
	5.7	Improp	per Integrals	470
		5.7.1	Intuitive Idea	471
		5.7.2	Definitions and Classification	471
		5.7.3	Improper Integrals of the First Kind	475
		5.7.4	Improper Integrals of the Second Kind	477
		5.7.5	Improper Integrals of the Third Kind	480
		5.7.6	Bounding Improper Integrals	481
	5.8	Solved	Problems (Calculation of Primitives / Definite Integration)	484
	5.9	Solved	Problems (Calculation of Areas)	522
	5.10	Solved	Problems (Improper Integration)	543
V	Li	near	Algebra	559
~	. .			
6	Line	ear Alg	gebra: Matrices and Systems of Equations	561
	0.1	Matric	68	562
		0.1.1	Types of Matrices	002 562
		0.1.2	Square Matrices	000 E60
	6.9	0.1.3 Mataia	Echelon Matrices	008 5.00
	0.2	Matrix	Motation Addition	500
		0.2.1	Multiplication by a Cooler	500
		0.2.2	Multiplication by a Scalar	509
		0.2.3	Multiplication of a Row vector by a Column vector	570
	6.2	0.2.4 Donly (Matrix Multiplication	570
	0.5	C 2 1	Flomentary Transformations	572
		620	Equivalent Matrices	572
		633	Bank Calculation by Caussian Method	573
	6.4	U.J.J Invorse	Matrix	577
	0.4	6 4 1	Calculation of the Inverse Matrix Using Caussian Method	578
	6 5	Dotorn	openet of a Matrix	581
	0.0	6 5 1	Definition and Calculation	581
		652	Calculation of the Bank of a Matrix Using Determinants	586
	6.6	System	of Linear Equations	587
	0.0	6 6 1	Types of Systems Classification	588
		6.6.2	Equivalent Systems	588
		663	Matrix Form of a System of Equations	589
		664	Elementary Transformations in Matrix Form	590
		6.6.5	Rouché-Frobenius Theorem	591
		6.6.6	Solving Systems Using the Gaussian Method	593
	6.7	Geome	etric Approximation to Systems of Linear Equations	597
		6.7.1	Geometric Interpretation of a System of Two Linear Equations with	501
			Three Unknowns	599
		6.7.2	Geometric Interpretation of a System of Three Linear Equations with	500
			Three Unknowns	602
		6.7.3	Equation of a Line in Space	608
	6.8	Solved	Problems (Matrices)	611
	6.9	Solved	Problems (Systems of Equations)	638
			· · · · · · · · · · · · · · · · · · ·	

Preface

The book you hold in your hands (whether in physical or digital format) is the result of over twenty-five years of teaching mathematics in engineering degrees. The book follows the basic scheme of a core calculus course in one variable of the new degrees adapted to the European Higher Education Area, but includes three additional chapters: one dedicated to mathematical reasoning and proof methods, another dedicated to numerical sets, with special emphasis on complex numbers, and a final chapter intended as an introduction to linear algebra, in which matrices and systems of linear equations are presented.

Throughout these years of teaching and research, we have imparted substantial knowledge but without any doubt, it is these students who have taught us how to approach our teaching to be better teachers! In this sense, this book aims to reflect the way of studying of the students that we can base on the necessary compromise between the quantity of knowledge we want to convey and the quality of that knowledge or how that knowledge is acquired. Formalisms sometimes put obstacles to understanding. But without formalisms, new knowledge cannot be built.

This book reflects a rigorous and precise mathematical approach combined with a clear didactic intention. In each chapter of the book, we wanted to justify everything that is exposed, proving most of the theorems and propositions, but without that generating problems or hindering reading. The basic scheme followed by each of the chapters is the following:

- An introduction, which briefly presents the contents of the chapter.
- The development of theoretical concepts and procedures, with a significant number of examples and demonstrations of theorems.
- A series of Proposed Exercises, interspersed in the text, to check the level of achievement of the material. The solution to the Proposed Exercises is found in an Annex (www.Routledge.com/9781032505442).
- Solved Problems at the end of each chapter, organized according to theme and degree of difficulty.

In particular, and as a demonstration of the effort we have put into transmitting mathematics in the most didactic and clear way possible, the book includes more than 300 figures and more than 200 solved problems.

We sincerely believe that this book can be an excellent tool to guide and complete the study of a calculus course in one variable in a face-to-face study, but it can also be used as basic support material in calculus courses taught at a distance.

We cannot conclude this prologue without thanking those who have helped us, in one way or another, to make this book a reality. Thus, we thank Daniel Amposta Navarro, Ignacio Arruga Cantalapiedra, Sergio Arruga Cantalapiedra, Antonio de la Casa Gómez, and Jesús Martínez Fernández.

Barcelona, August 27, 2024.

Francesc Pozo Montero Núria Parés Mariné Yolanda Vidal Seguí

Author Biographies

Francesc Pozo Montero received his degree in Mathematics from the University of Barcelona in 2000 and completed his PhD in Applied Mathematics at the Universitat Politècnica de Catalunya (UPC) in 2005. Since 2000, he has been a member of the Department of Mathematics at UPC, where he currently holds the position of Full Professor. He also serves as the coordinator of the Control, Data, and Artificial Intelligence research group and is recognized as a Senior Member of IEEE.

Francesc Pozo Montero's research interests include condition monitoring, control systems, data-driven modeling, system identification, and structural health monitoring, with a particular emphasis on applications related to wind turbines.

He is an Editorial Board Member for several prestigious international journals, including Structural Control and Health Monitoring (Wiley), International Journal of Distributed Sensor Networks (Wiley), Mathematical Problems in Engineering (Wiley), Mathematics (MDPI), Sensors (MDPI), Algorithms (MDPI), Journal of Vibration and Control (Sage), Frontiers in Built Environment (Frontiers), Frontiers in Energy Research (Frontiers), and Energies (MDPI).

Francesc Pozo Montero has made substantial contributions to his field, authoring over 70 high-impact journal articles, participating in 23 competitive R&D&I projects, and writing 34 book chapters and 12 books. He has successfully supervised six PhD candidates, filed one invention patent, and established a collaboration contract with an industry partner. His work has also been presented in more than 130 conference papers.

Núria Parés Mariné holds a degree in Mathematics (1999) and a PhD in Applied Mathematics (2005) from the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. As a Full Professor at UPC, she focuses on developing and advancing numerical methods applied to engineering. Over the years, her research has concentrated on three primary areas: result certification, model reduction techniques, and machine learning. Through her innovative approach, she has successfully collaborated with internationally renowned researchers, contributing significantly to the academic and scientific community.

Núria Parés Mariné has made substantial contributions to her field, authoring over 25 high-impact journal articles and participating in 19 competitive R&D&I projects. Her prolific output also includes writing three book chapters and ten books. She has guided and supervised three PhD candidates to successful completion, showcasing her dedication to mentoring the next generation of researchers. In addition, she has been involved in technology transfer, establishing a collaboration contract with an industry partner and bridging the gap between academia and real-world applications.

Her work has been widely recognized and presented in more than 65 conference papers, illustrating her commitment to disseminating knowledge and sharing advancements with the broader scientific community. Prof. Parés continues to be a leading figure in her research areas, driving innovation and excellence in applied mathematics. Her ongoing efforts in integrating machine learning with traditional numerical methods are paving the way for new, groundbreaking approaches in engineering and related disciplines.

Yolanda Vidal Seguí holds a degree in Mathematics (1999) and a PhD in Applied Mathematics (2005) from the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. As an Associate Professor at UPC and an IEEE Senior Member, she is deeply involved in multidisciplinary research, with a particular focus on the application of her expertise to wind turbines. Her research areas encompass condition monitoring, structural health monitoring, fault diagnosis and prognosis, predictive maintenance, machine learning, deep learning, artificial intelligence, and mathematical modeling.

Yolanda Vidal Seguí serves on the Editorial Board of several prestigious international journals, including Engineering Applications of AI (Elsevier), Wind Energy (Wiley), Wind Energy Science (Copernicus), Journal of Vibration and Control (SAGE), IET Renewable Power Generation (IET), Mathematics (MDPI), Sensors (MDPI), Energies (MDPI), Frontiers in Built Environment, and Frontiers in Energy Research.

Her prolific contributions to the field are demonstrated by over 70 high-impact journal articles, 23 competitive R+D+I projects, 17 book chapters, and 10 books. She has supervised 7 PhD theses, with 4 currently ongoing. Additionally, she holds 1 invention patent and has secured a collaboration contract with an industry partner. Dr. Vidal has also presented 120 conference papers, further showcasing her dedication and impact in her areas of expertise.

Part I

Mathematical Reasoning

1

Introduction to Mathematical Reasoning

«If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.» (John von Neumann)

In this first introductory chapter, the different mechanisms that mathematics uses to prove various types of properties are presented. Among the different strategies presented (direct proof, contrapositive, or proof by contradiction), mathematical induction stands out, which allows proving properties about natural numbers.

1.1 Mathematical Reasoning

According to the 22nd edition of the Spanish Language Dictionary, mathematics can be defined as follows:

Definition 1.1 (Mathematics). Deductive science that studies the properties of abstract entities, such as numbers, geometric figures, symbols, and their relationships.

FIGURE 1.1 In a right triangle with hypotenuse c and legs a and b, we have $a^2 + b^2 = c^2$.

For example, the Pythagorean theorem (Figure 1.1) tells us that if we have a right triangle with sides a and b and hypotenuse c, then the sum of the squares of the legs is equal to the square of the hypotenuse, that is:

$$a^2 + b^2 = c^2.$$

In this chapter, we will see some of the tools that mathematics uses to prove these types of properties.

Mathematical properties or statements are called different names depending on their importance. The most important properties are called **theorems** (such as the Pythagorean theorem), while lemmas, corollaries, or propositions collect less important properties. Let's see some more formal definitions.

Definition 1.2 (Theorem). A proposition that can be logically proven from axioms or other theorems already proven, using accepted rules of inference.

Definition 1.3 (Lemma). A proposition that must be proven before establishing a theorem.

Definition 1.4 (Corollary). A proposition that does not require a particular proof but is easily deduced from what has been proven before.

Definition 1.5 (Proposition). A statement of a truth that has been proven or that is being tried to be proven.

The importance of theorems, lemmas, corollaries, or propositions is that they collect properties that **have been proven to be true** (following the logical-deductive method characteristic of mathematics).

But what is a mathematical proof?

Definition 1.6 (Proof). A mathematical proof is a **coherent sequence of steps** that allows one to ensure the truth of a statement.

The starting point of a proof is a set of statements that are considered true and are called **premises**. These premises can be hypotheses, axioms, or other propositions or theorems previously proven. Considering the premises as true, one must arrive at the original statement by **applying certain logical rules or applying previously proven properties**.

1.2 Is It Easy to Make a Mathematical Proof?

In general, proving a mathematical property can be very complex. The key questions we must ask ourselves are:

- Where do I start?
- What steps should I follow?

That is, the difficulty lies in knowing how to choose the premises well and then knowing which logical reasoning to follow to arrive at the original statement.

In this book, we will present and review basic concepts of calculus in one variable and algebra, delving into reasoning and proofs.

1.3 Methods of Proof

Although there is generally no single procedure for proving theorems, there are different **methods of proof** that are commonly used in mathematics. The five basic types of reasoning are:

- Direct proof.
- Proof by contrapositive.
- Proof by contradiction or reductio ad absurdum.
- Proof by counterexample.
- Proof by induction.

Next, we will see several examples of simple proofs obtained from these four methods. Suppose we want to prove that a statement is true. We will call this statement Q. For example, let's imagine that we want to prove that if a and b are two real numbers, then the square of their sum is equal to the square of the first term plus the square of the second term plus twice the first term times the second term, that is:

$$(a+b)^2 = a^2 + b^2 + 2ab.$$

To prove Q, we generally need to start with some premises and logical rules. We will call these properties P. In the case of wanting to prove that $(a+b)^2 = a^2+b^2+2ab$, the premises