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Preface

The book you hold in your hands (whether in physical or digital format) is the result of
over twenty-five years of teaching mathematics in engineering degrees. The book follows
the basic scheme of a core calculus course in one variable of the new degrees adapted to
the European Higher Education Area, but includes three additional chapters: one dedicated
to mathematical reasoning and proof methods, another dedicated to numerical sets, with
special emphasis on complex numbers, and a final chapter intended as an introduction to
linear algebra, in which matrices and systems of linear equations are presented.

Throughout these years of teaching and research, we have imparted substantial knowl-
edge but without any doubt, it is these students who have taught us how to approach our
teaching to be better teachers! In this sense, this book aims to reflect the way of studying
of the students that we can base on the necessary compromise between the quantity of
knowledge we want to convey and the quality of that knowledge or how that knowledge is
acquired. Formalisms sometimes put obstacles to understanding. But without formalisms,
new knowledge cannot be built.

This book reflects a rigorous and precise mathematical approach combined with a clear
didactic intention. In each chapter of the book, we wanted to justify everything that is ex-
posed, proving most of the theorems and propositions, but without that generating problems
or hindering reading. The basic scheme followed by each of the chapters is the following:

e An introduction, which briefly presents the contents of the chapter.

e The development of theoretical concepts and procedures, with a significant number
of examples and demonstrations of theorems.

e A series of Proposed Exercises, interspersed in the text, to check the level of achieve-
ment of the material. The solution to the Proposed Exercises is found in an Annex
(www.Routledge.com/9781032505442).

e Solved Problems at the end of each chapter, organized according to theme and degree
of difficulty.

In particular, and as a demonstration of the effort we have put into transmitting mathe-
matics in the most didactic and clear way possible, the book includes more than 300 figures
and more than 200 solved problems.

We sincerely believe that this book can be an excellent tool to guide and complete the
study of a calculus course in one variable in a face-to-face study, but it can also be used as
basic support material in calculus courses taught at a distance.

Xi
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xii Preface

We cannot conclude this prologue without thanking those who have helped us, in one
way or another, to make this book a reality. Thus, we thank Daniel Amposta Navarro,
Ignacio Arruga Cantalapiedra, Sergio Arruga Cantalapiedra, Antonio de la Casa Gomez,
and Jesus Martinez Fernandez.

Barcelona, August 27, 2024.

Francesc Pozo Montero
Nuria Parés Mariné
Yolanda Vidal Segui
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1

Introduction to Mathematical Reasoning

«If people do not believe that mathematics is simple, it is only because they do mnot
realize how complicated life is.» (John von Neumann)

In this first introductory chapter, the different mechanisms that mathe-
matics uses to prove various types of properties are presented. Among the
different strategies presented (direct proof, contrapositive, or proof by contra-

diction), mathematical induction stands out, which allows proving properties
about natural numbers.

1.1 Mathematical Reasoning

According to the 22nd edition of the Spanish Language Dictionary, mathematics can be
defined as follows:

Definition 1.1 (Mathematics). Deductive science that studies the properties of abstract
entities, such as numbers, geometric figures, symbols, and their relationships.

DOI: 10.1201/9781003399735-1 3
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FIGURE 1.1
In a right triangle with hypotenuse ¢ and legs a and b, we have a? + b = ¢2.

For example, the Pythagorean theorem (Figure 1.1) tells us that if we have a right
triangle with sides a and b and hypotenuse ¢, then the sum of the squares of the legs is
equal to the square of the hypotenuse, that is:

a? +b* =

In this chapter, we will see some of the tools that mathematics uses to prove these types
of properties.

Mathematical properties or statements are called different names depending on their
importance. The most important properties are called theorems (such as the Pythagorean
theorem), while lemmas, corollaries, or propositions collect less important properties. Let’s
see some more formal definitions.

Definition 1.2 (Theorem). A proposition that can be logically proven from axioms or
other theorems already proven, using accepted rules of inference.

Definition 1.3 (Lemma). A proposition that must be proven before establishing a theo-
rem.

Definition 1.4 (Corollary). A proposition that does not require a particular proof but is
easily deduced from what has been proven before.

Definition 1.5 (Proposition). A statement of a truth that has been proven or that is
being tried to be proven.

The importance of theorems, lemmas, corollaries, or propositions is that they collect
properties that have been proven to be true (following the logical-deductive method
characteristic of mathematics).

But what is a mathematical proof?
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Definition 1.6 (Proof). A mathematical proof is a coherent sequence of steps that
allows one to ensure the truth of a statement.

The starting point of a proof is a set of statements that are considered true and are called
premises. These premises can be hypotheses, axioms, or other propositions or theorems
previously proven. Considering the premises as true, one must arrive at the original state-
ment by applying certain logical rules or applying previously proven properties.

1.2 Is It Easy to Make a Mathematical Proof?

In general, proving a mathematical property can be very complex. The key questions we
must ask ourselves are:

e Where do I start?

o What steps should I follow?

That is, the difficulty lies in knowing how to choose the premises well and then knowing
which logical reasoning to follow to arrive at the original statement.

In this book, we will present and review basic concepts of calculus in one variable and
algebra, delving into reasoning and proofs.

1.3 Methods of Proof

Although there is generally no single procedure for proving theorems, there are different
methods of proof that are commonly used in mathematics. The five basic types of rea-
soning are:

e Direct proof.

o Proof by contrapositive.

e Proof by contradiction or reductio ad absurdum.
e Proof by counterexample.

e Proof by induction.

Next, we will see several examples of simple proofs obtained from these four methods.

Suppose we want to prove that a statement is true. We will call this statement @. For
example, let’s imagine that we want to prove that if @ and b are two real numbers, then the
square of their sum is equal to the square of the first term plus the square of the second
term plus twice the first term times the second term, that is:

(a+b)? = a® +b* + 2ab.

To prove @, we generally need to start with some premises and logical rules. We will call
these properties P. In the case of wanting to prove that (a+b)? = a?+b?+2ab, the premises



