


Exercises in Statistical 
Reasoning

Students cultivate learning techniques in school that emphasize procedural problem solving and 
rote memorization. This leads to efficient problem solving for familiar problems. However, con-
ducting novel research is an exercise in creative problem solving that is at odds with a procedural 
approach; it requires thinking deeply about the topic and crafting solutions to unique problems. It 
is not easy to move from a topic-based, carefully curated curriculum to the daunting world of inde-
pendent research, where solutions are unknown and may not even exist. In developing this book, 
we considered our experience as graduate students who faced this transition.

Exercises in Statistical Reasoning is a collection of exercises designed to strengthen creative prob-
lem-solving skills. The exercises are designed to encourage readers to understand the key points of 
a problem while seeking knowledge, rather than separating out these two activities. To complete the 
exercises, readers may need to reference the literature, which is how research-based knowledge is 
often acquired.

Features of the Exercises

• The exercises are self-contained, though several build upon concepts from previous 
problems.

• Each exercise opens with a brief introduction that emphasizes the relevance of the content. 
Then, the problem statement is presented as a series of intermediate questions.

• For each exercise, we suggest one possible solution, though many may exist.
• Following each solution, we discuss the historical background of the content and points of 

interest.
• For many exercises, a brief demonstration is provided illustrating relevant concepts.

There is an abundance of high-quality textbooks that cover a vast range of statistical topics. However, 
there is also a lack of texts that focus on the development of problem-solving techniques that are 
required for conducting novel statistical research. We believe that this book helps fill the gap. Any 
reader familiar with graduate-level classical and Bayesian statistics may use this book. The goal is 
to provide a resource that such students can use to ease their transition to conducting novel research.
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Preface

Students cultivate learning techniques in school that emphasize procedural problem solv-
ing and rote memorization. This leads to efficient problem solving for familiar problems.
However, procedural problem solving is troublesome when one is confronted with an un-
familiar problem. Thus, when graduate students transition to conducting novel research,
many are unequipped with the tools for autodidactic study. Research is an exercise in cre-
ative problem solving, which is at odds with a procedural approach; it requires thinking
deeply about the topic and crafting solutions to unique problems. It is not easy to move
from a topic-based, carefully curated curriculum to the daunting world of independent
research, where solutions are unknown and may not even exist. In developing this book,
we considered our experience as graduate students facing this transition.

This book is a collection of statistical exercises that train creative and holistic prob-
lem solving. These exercises appeared on statistics preliminary exams that demarcated
the transition from coursework to research activity. They were designed to encourage ex-
ploratory thought and discourage rote mechanics and memorization. Exercises start with
a seemingly trivial concept, which then develops into a significant topic in statistics. The
path to some solutions may seem circuitous, while other paths may be elegantly simple.
Each exercise is a practice of research methodology and encourages the reader to explore
the true meaning and intuition behind many well-known statistical concepts.

Expected Audience

The expected readers are graduate or advanced undergraduate students that are interested
in developing a research-oriented mindset. However, anyone with the appropriate prereq-
uisites may benefit from this practice in creative problem solving. An understanding of
graduate-level classical and Bayesian statistics is assumed. More specifically, we assume
an intermediate understanding of the following topics: the exponential family, hypothesis
testing, likelihood estimation, linear models, mathematical statistics, probability theory,
Markov processes, and Markov chain Monte Carlo algorithms.

Structure of This Book

We grouped the exercises into eight chapters, which are named after particular statisti-
cal topics. Though the ordering of the chapters may suggest a linear reading order, each
chapter is self-contained, so the reader may explore the topics in whichever order they
wish. The chapters concerning probability, hypothesis testing, and asymptotics are divided
into two sections: the classical perspective and the Bayesian perspective. We structured
these chapters this way to explicitly compare the two frameworks.

The exercises are self-contained, though several build upon concepts from previous
problems. Exercises that are particularly difficult have an asterisk next to their names.
Many exercises bring several topics together to make progress on a single research prob-
lem. Hence, being widely read is important; understanding ideas beyond any specific re-
search agenda will always be useful.

xi



xii Preface

Each exercise opens with a brief introduction that emphasizes the relevance of the con-
tent. Then, the problem statement is presented as a series of intermediate questions; so-
lutions to these questions typically depend on the previous steps. For each exercise, we
suggest one possible solution, though many may exist. These solutions can be found at
the end of each section. However, the reader needs to understand concepts and ideas in
their own way to ensure that they will feel comfortable adapting to different problems that
they have not yet seen. This is, in fact, the nature of research. Following each solution, we
discuss the historical background of the content and points of interest. For many exercises,
we provide a brief demonstration that illustrates relevant concepts. Finally, there are “Mis-
cellaneous” points for several exercises that provide details on mathematical or numerical
techniques used to complete the exercises.

The exercises in this book aim to check for an understanding of foundational statistical
topics. Our approach does not heavily emphasize a theorem-proof structure nor does it
focus on detailed regularity conditions upon which some technical result strictly holds. We
do not argue over whether a function needs to be twice or thrice differentiable or debate
the strict conditions under which a series expansion can be suitably stopped. Rather, this
book explores how statistical concepts work, revisiting even the most basic ideas that may
have been overlooked or omitted in previous coursework.

How to Use This Book

We recommend that readers mindfully work through this book, drafting solutions and
deliberately noting any successes and obstacles. We encourage readers to attempt each ex-
ercise on their own before reviewing the proposed solution. The aim of this book is to teach
problem-solving skills – not content. We do not present all the material needed to answer
the questions. To complete an exercise, readers may need to reference the literature, which
is how research-based knowledge is often acquired. In fact, the exercises are designed to
encourage readers to understand the key points of a problem while seeking knowledge,
rather than separating out these two activities. Finally, we highly encourage readers to
look through the further reading for exercises of particular interest.

Why We Wrote This Book

We collaborated on this book because we shared a singular vision – that actively solving
problems unlocks a far deeper understanding of statistical concepts than simply memoriz-
ing theorems, proofs, and definitions. The exercises in this book originally appeared as a
series of preliminary exam questions for PhD students. The unique nature of the questions
prompted us (the student authors) to compile a summary of solutions, along with points of
interest containing further readings and research questions. The exam setter (Prof. Stephen
Walker) was then brought in on the project to ensure that the solutions and questions were
checked for full correctness. Hence, the original solutions were the students’, the original
questions were the professors’, and all the rest a joint effort. To complete the book, we
added brief backgrounds to each exercise and added figures to illustrate particular con-
cepts of interest. Aside from correcting errors, the questions and answers remain as they
were originally constructed.

There is an abundance of high-quality textbooks that cover a vast range of statistical
topics. However, there is also a lack of texts that focus on the development of problem-
solving techniques that are required for conducting novel statistical research. We believe
that this book helps fill the gap.



Preface xiii

A Perspective from Prof. Walker

Graduate students often learn advanced material and engage in research by participating
in a structured master’s or PhD program. The term “program” suggests a hint of homo-
geneity – that all students can learn in the same way. This assumption is likely not the case.
In most graduate programs, the first year (possibly more) involves a regular schedule of
courses, homework, and exams. If homework and exams shortly follow after a concept or
idea is introduced, it is quite reasonable to ask, “where is the time to understand going to
come from?” An alternative program design might check knowledge after students have
had sufficient time to understand the material. From a practical experience, I attended an
undergraduate program in which eight exams (three hours each) were administered over
the final four days of the program, after 3 years. How was it possible to memorize all the
material for these exams? The only way to deal with things was to understand the mate-
rial. Some concepts took days to master, while others took weeks or even months. Given
three years, there was more than enough time to deeply understand the content, and the
most successful approach to this was to tackle relevant problems and seek help when get-
ting stuck after sufficient time figuring it out. The idea of reading course materials may
not be enough to fully understand or be able to move on. Hence, the book is designed to
assist with the understanding through problem solving. This would involve self study and
creating the time to do problems, not unlike my undergraduate and graduate programs.

A Perspective from the Students

The origins of this book can be traced back to Spring 2022, when we began to prepare for
our preliminary exam. We initially struggled with the questions, finding them difficult to
prepare for because they demanded a deeper level of understanding than the “reading,
memorizing, and replicating” cycle that is prevalent in higher education. Success on the
exam hinged on our ability to adapt to unfamiliar questions and apply our knowledge to
new scenarios. Thus, we needed to move beyond memorization and cultivate the problem-
solving skills necessary to tackle statistical problems that were new to us.

To prepare for the exam, we deeply engaged with questions from past exams every
week. We intentionally approached the questions with a slow pace to foster a deeper un-
derstanding of the content and explore related concepts. After several weeks, all of us rec-
ognized the value of the questions and our more profound understanding of the material.
After a couple of months, our problem-solving skills felt sharper than ever before.

Education often prioritizes breadth of knowledge over depth, leaving students with a
superficial understanding of many topics. As a result, the learned content is quickly forgot-
ten. The traditional learning-through-memorization paradigm indeed has a major flaw: its
efficacy significantly decreases with time. An approach that aims to build problem-solving
skills and a deeper understanding of content ages much better. The critical thinking and
problem-solving skills that we strengthened have become essential tools in our broader
academic and professional pursuits.
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Probability

Statisticians use an extensive amount of probability theory, both for constructing models
and for finding properties of statistical procedures. For example, probability motivates
the use of the sample mean for estimating a population mean; establishing properties of
such estimators is done so by treating the sample as random variables. Many frequentist
properties are based on the large sample behavior of an estimator. Thus, the convergence of
random variables becomes important to statistical inference. In nonparametric problems,
it is the convergence of random functions that is the focus of attention.

In Bayesian analysis, probability underpins the prior and posterior distributions, which
are fundamental for Bayesian inference. Recently, many Bayesian models have been esti-
mated using sampling-based techniques, such as Markov chain Monte Carlo samplers. As
a consequence, much work on the convergence properties of Markov chains appears in
the Bayesian literature. New sampling ideas include the use of diffusion processes, such
as Langevin diffusion, which may be defined to have a specific stationary distribution.
Other samplers include Hamiltonian Monte Carlo or particle filters, which are suitable for
hidden Markov models.

Additionally, Bayesian nonparametrics is highly dependent on a strong knowledge of
probability. Probability measures are constructed on spaces of functions, such as for den-
sity and distribution functions. For example, the Dirichlet process relies on a suitable defi-
nition of finite dimensional distributions but can also be understood directly via the use of
stochastic processes behaving as a distribution function with probability one. Then, prob-
ability serves an essential role for deriving the correct posterior distribution and establish-
ing conditions for consistency.

The questions in this chapter focus on the use of probability for statistics and stochastic
processes. Special attention is given to the study of stochastic processes, which is often
where statisticians meet probability for which they may not be so familiar.

Question 1.1.1 investigates the central limit theorem and its convergence in probability,
which are useful for looking at sample means. Question 1.1.2 considers infinitely divisible
random variables, which can be represented as the sum of n independent and identically
distributed random variables for all n; such variables include the gamma, Gaussian, and
Poisson. Finally, Question 1.1.3 is on the maximal inequality for a martingale sequence,
which could be seen as an extension of the well-known Markov inequality.

The questions on stochastic processes mostly concern Markov processes. For example,
Question 1.2.1 is on the simple random walk, whereby a walk on the integers goes up one
or down one with equal probability. A primary interest is how long the process will take
to return to the starting point while also reaching a given height. Question 1.2.2 includes
a simple birth process, where any individual alive at a given generation gives birth to an
independent set of a random number of offspring according to a probability mass function.
The sum of these offspring determines the size of the next generation, and so on. The
question of interest is the probability that the population goes extinct.

Two questions are concerned with Markov chains in discrete time, which are repre-
sented as transition matrices. Question 1.2.3 explains fundamental properties for a chain
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with just two states; the eigenvalues of the transition matrix determine how the chain be-
haves and also establishes the rate of convergence to the stationary probability, assuming
it exists. Question 1.2.4 explores a larger state space with focus placed on properties of the
eigenvalues and the corresponding properties of the chain.

Finally, there are two questions on the Poisson process. Question 1.2.5 concerns the
construction of the Poisson process via changes in the process during an arbitrarily small
amount of time. Describing changes of random mechanisms over a small interval of time
is often reasonable in practice, as this is where the information would be available. The
subsequent plan is to find how the changes then look over a larger interval of time. Ques-
tion 1.2.6 concerns the construction of the Poisson process via independent exponential
random variables, which determine how long the process remains at any given height.

Q1.1 Questions – Probability Theory

Q1.1.1 – Types of convergence of a sample mean

Introduction. This question examines probabilistic properties of a sample mean. The first
result is that the sample mean converges in distribution to a normal random variable when
it is rescaled to have a fixed variance; this is regardless of the number of samples. The
proof of this can be found using Laplace transforms. The next step is to show that the
sample mean converges in probability to the mean of the population, which implies that
a deterministic sequence of subsamples converges almost surely. The exercise does not
include the almost sure convergence of Xn to the mean (and the conditions under which
this happens) because it is quite difficult to prove.

For a random sequence {Xn}, there are associated sequences: the sequence of prob-
abilities on events {Pn(An)} and the sequence of distribution functions {FXn(x)}. These
different types of sequences lead to the different types of convergence for {Xn}.

Question. Suppose X1, . . . , Xn are independent and identically distributed random vari-
ables with mean zero and variance 1. Define

Xn =
1
n

n

∑
i=1

Xi.

(i) Show that E(Xn) = 0 and Var(Xn) = 1/n.

(ii) By considering the Laplace transform ϕn(t) = E{exp
(
t
√

nXn
)
} with t > 0, show

why Zn =
√

nXn is approximately a standard normal random variable for large n.

(iii) Prove the Markov inequality: if Y is a positive continuous random variable, then
P(Y > a) < E(Y)/a for all a > 0.

(iv) For all sequences εn → 0 for which nε2
n → ∞, show that P(|Xn| > εn) → 0.

(v) Show there exists a deterministic sequence {ni}i≥1 for which |Xni | → 0 almost surely
as i → ∞.
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Q1.1.2 – Infinite divisibility of random variables

Introduction. Introduced by Bruno de Finetti in 1929, the concept of infinitely divisible
distributions plays an important role in modern probability theory and financial model-
ing, where it has found applications in limit theorems and Lévy and additive processes.
Many known distributions are infinitely divisible, such as the gamma, Gaussian, and Pois-
son. Thus, the study of infinitely divisible distributions and their decompositions are of
broad interest. This question concerns the use of moment generating functions to deter-
mine whether distributions are infinitely divisible. In particular, the exercise investigates
the gamma and Poisson distributions.

Question. A random variable X is infinitely divisible if, for every integer n = 1, 2, 3, . . ., it
is possible to write

X =
n

∑
i=1

Xi,

where the {Xi} are independent and identically distributed. The distribution of the {Xi}
may depend on n. For example, if X is standard normal, then each Xi is normal with mean
0 and variance 1/n.

(i) Suppose X ∼ Ga(a, 1). Find the moment generating function (Laplace transform) for
X; i.e., ϕX(θ) = E (e−θX) for θ > 0.

(ii) If X is infinitely divisible, explain why ϕX(θ) = {ϕXi (θ)}n for each i = 1, . . . , n.

(iii) Determine whether the gamma variable is infinitely divisible, and if so, find the dis-
tribution for each Xi.

(iv) Show that Z = Pois(λ) is infinitely divisible.

(v) If X is Ga(a, 1), Z is Pois(λX), and Y is Ga(a + Z, 1 + λ), show that Y is marginally
infinitely divisible.

Q1.1.3* – A maximal inequality for a martingale sequence

Introduction. This question outlines a proof for the Doob martingale inequality, which
provides an upper-bound for the probability that the maximum value of a martingale se-
quence exceeds any given value over a particular interval of (discrete) time. This inequality
may be viewed as an extension of the Markov inequality.

Question. Suppose {Mn : n ∈ N} is a non-negative martingale such that E (Mn+1 |
M1:n) = Mn. Define the events

En = {M1 < ϵ, . . . , Mn−1 < ϵ, Mn > ϵ}

for n = 1, . . . , K.

(i) Show that the set of events {En : n = 1, . . . , K} is mutually disjoint.
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(ii) Show that

{max{M1, . . . , MK} > ϵ} ≡
K⋃

n=1

En.

(iii) Using the martingale property, show that∫
En

MK f (M1, . . . , MK) dM1 . . . dMK =
∫

En
Mn f (M1, . . . , MK) dM1 . . . dMK

for any n ≤ K, where f (M1, . . . , MK) represents the joint density function for
{M1, . . . , MK}.

(iv) Show that
∫

En
Mn f (M1, . . . , MK) dM1 . . . dMK > ϵ P(En).

(v) Show that P(max{M1, . . . , MK} > ϵ) ≤ E(MK)/ϵ.
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S1.1 Solutions & Further Reading – Probability Theory

S1.1.1 – Types of convergence of a sample mean

(i) The mean and variance are

E(Xn) = E

(
1
n

n

∑
i=1

Xi

)
= E(X1) = 0,

Var(Xn) = Var

(
1
n

n

∑
i=1

Xi

)
=

1
n

Var(X1) =
1
n

,

which follow from the independence of the {Xi}. If the {Xi} are not independent,
then covariances would need to be included.

(ii) This can be solved through a Taylor expansion of ex (ignoring higher order terms of
1/n) and then taking an expectation. This is a standard practice for establishing the
central limit theorem:

ϕn(t) = E
{

exp(t
√

nXn)
}
= E

{
exp

(
t
√

n
1
n

n

∑
i=1

Xi

)}

= E

{
exp

(
t

1√
n

n

∑
i=1

Xi

)}

=

[
E
{

exp
(

t
1√
n

Xi

)}]n

=
{

E
(

1 + tXi/
√

n + 1
2 t2X2

i /n + o(1/n)
)}n

=
(

1 + 0 + 1
2 t2/n + o(1/n)

)n
→ exp

(
1
2 t2
)

,

where the fourth equality is obtained because the {Xi} are independent and identi-
cally distributed. The final line uses the exponential approximation (1 + x/n)n → ex.
Note that o(1/n) represents the terms for which n o(1/n) → 0, so (1 + a/n +
1/n2)n → ea. By Lévy’s continuity theorem, pointwise convergence of the Laplace
transform of Zn implies convergence in distribution to a standard normal random
variable as n → ∞.

(iii) The key starting point is a 1(Y > a) ≤ Y 1(Y > a) ≤ Y. Taking expectations with
respect to Y, it is seen that a P(Y > a) ≤ E(Y), where E{1(Y > a)} = P(Y > a).

(iv) To obtain a useful Markov inequality, consider

P(|Xn| > ϵn) = P
(
|Zn| >

√
nϵn
)
= P(Z2

n > nϵ2
n) ≤ E(Z2

n)/(nϵ2
n),

which goes to 0 as nϵ2
n → ∞.




