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Preface to the Second Edition

In practice, the other three versions of the Fourier analysis are approximated using
the discrete Fourier transform (DFT). The amplitude profile of practical signals
is usually arbitrary. Therefore, the numerical approximation of Fourier analysis is
essential in practice. However, this important feature is not given due importance
in the literature. This procedure has already been emphasized in the first edition
for 1-D signals. In the second edition, this feature has been extended to the 2-D
Fourier analysis also. Further, the approximation of Fourier analysis in the practical
implementation of such important operations, such as convolution and correlation,
is also emphasized. Practically biased presentation of the topics is a key feature of
both the editions of this book.

The salient points of this edition include: (i) updation of some sections; (ii)
additional examples; (iii) additional exercises; and (iv) some corrections.

New topics covered in this edition include: (i) sampling of bandpass signals; (ii)
circular convolution from linear convolution; and (iii) more coverage of 2-D Fourier
analysis.

D. Sundararajan



Preface to the First Edition

Transform methods dominate the study of linear time-invariant systems in all
areas of science and engineering, such as circuit theory, signal/image processing,
communications, controls, vibration analysis, remote sensing, biomedical systems,
optics, acoustics, etc. The heart of the transform methods is Fourier analysis.
Several other often used transforms are generalizations or specific versions of
Fourier analysis. It is unique in that it is much used in theoretical studies as well
as in practice. The reason for the latter case is the availability of fast algorithms
to approximate the Fourier spectrum adequately. For example, the existence and
continuing growth of digital signal and image processing is due to the ability to
implement the Fourier analysis quickly by digital systems. This book is written for
engineering, computer science and physics students, and engineers and scientists.
Therefore, Fourier analysis is presented primarily using physical explanations with
waveforms and/or examples, keeping the mathematical form to the extent it is
necessary for its practical use. In engineering applications of Fourier analysis, its
interpretation and use are relatively more important than rigorous proofs. Plenty of
examples, figures, tables, programs and physical explanations make it easy for the
reader to get a good grounding in the basics of Fourier signal representation and its
applications.

This book is intended to be a textbook for senior undergraduate and graduate
level Fourier analysis courses in engineering and science departments and a supple-
mentary textbook for a variety of application courses in science and engineering,
such as circuit theory, communications, signal processing, controls, remote sensing,
image processing, medical analysis, acoustics, optics and vibration analysis. For
engineering professionals, this book will be useful for self-study. In addition, this
book will be a reference for anyone, student or professional, specializing in practical
applications of Fourier analysis. The prerequisite for reading this book is a good
knowledge of calculus, linear algebra, signals and systems, and programming at the
undergraduate level.

Programming is an important component in learning and practicing Fourier
analysis. A set of MATLAB® programs are available at the website of the book.
While the use of a software package is inevitable in most applications, it is better

vii



viii Preface to the First Edition

to use the software in addition to self-developed programs. The effective use of a
software package or to develop own programs requires a good grounding in the basic
principles of the Fourier analysis. Answers to selected exercises marked * are given
at the end of the book. A Solutions Manual and slides are available for instructors
at the website of the book.

I assume the responsibility for all the errors in this book and would very
much appreciate receiving readers’ suggestions and pointing out any errors
(email:d_sundararajan@yahoo.com). I am grateful to my Editor and the rest of
the team at Springer for their help and encouragement in completing this project. I
thank my family for their support during this endeavor.

D. Sundararajan
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Chapter 1 ®
Signals ST

Abstract Basic signals, their classifications, and shifting and scaling of signals are
reviewed. First, basic signals such as impulse, sinusoid, step, ramp, and exponential
are introduced. Then, the classification of signals, based on periodicity, sampling
along the time and amplitude scales, even and odd symmetries, power and energy,
and randomness are presented. Signal operations shifting and scaling are then
explored. Finally, a review of the complex number system concludes the chapter.

Keywords Impulse - Sinusoid - Exponential - Unit-step - Even symmetry -
Odd symmetry - Energy - Power - Time-shifting - Time reversal - Signal
expansion - Signal compression - Complex numbers

Signals convey some information. Signals are abundant in the applications of sci-
ence and engineering. Typical signals are audio, video, biomedical, seismic, radar,
vibration, communication, and sonar. While the signals are mostly of continuous
nature, they are usually converted to digital form and processed by digital systems
for efficiency. In signal processing, signals are enhanced to improve their quality
with some respect, or some features are extracted or they are modified in some
desired way. A signal, in its mathematical representation, is a function of one or
more independent variables. While time is the independent variable most often, it
could be anything else, such as distance. The analysis is equally applicable to all
types of independent variables. Signal or waveform is used to refer to the physical
form of a signal. In its mathematical representation, a signal is referred to as a
function or sequence. This usage is not strictly adhered.

The amplitude profile of most naturally occurring signals is arbitrary and,
consequently, it is difficult to analyze, interpret, transmit, and store them in their
original form. The idea of a transform is to represent a signal in an alternative,
but equivalent, form to gain advantages in its processing. Fourier analysis, the
topic of this book, provides a widely used representation of signals. As signal
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2 1 Signals

representation is important and the most suitable representation of a signal depends
on its characteristics, we have to first study the classification of signals. Further, the
representation is in terms of some well-defined basis signals, such as the sinusoid,
complex exponential, and impulse. Although practical signals are mostly real-
valued, it becomes mandatory to use the equivalent complex-valued signals for ease
of mathematical manipulation. In addition, operations such as shifting and scaling
of signals are often required in signal analysis. All these aspects are presented in
this chapter.

1.1 Basic Signals

The amplitude profile of most naturally occurring signals is arbitrary. These signals
are analyzed using some well-defined basic signals, such as the impulse, step, ramp,
sinusoidal, and exponential signals. In addition, systems, which are hardware or
software realizations, modify signals or extract information from them. They are
also characterized by their responses to these signals. The basic signals either
have an infinite duration or infinite bandwidth. For practical purposes, they are
approximated to a desired accuracy. Fourier analysis has four versions and each
version represents different type of signals in the frequency domain. Therefore, it is
necessary to study both the continuous and discrete type of signals.

1.1.1 Unit-Impulse Signal

The unit-impulse and the sinusoidal signals are the most important signals in the
study of signals and systems. The continuous unit-impulse §(¢) is a signal with a
shape and amplitude such that its integral at the point + = 0 is unity. It is defined,
in terms of an integral, as

/OO x()6(t)dt = x(0)

—00

It is assumed that x (¢) is continuous at ¢ = 0 so that the value x(0) is distinct. The
product of x(¢) and §(¢) is

x()8(t) = x(0)8(r)

since the impulse exists only at # = 0. Therefore,

/OO x(t)6(t) dt = x(0) /OO 8(t)dt = x(0)

The value of the function x(¢), at t = 0, is sifted out or sampled by the defining
operation. By using shifted impulses, any value of x(#) can be sifted.
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It is obvious that the integral of the unit-impulse is the unit-step u (). Therefore,
the derivative of the unit-step signal is the unit-impulse signal. The value of the unit-
step is zero for t < 0 and 1 for # > 0. Therefore, the unit area of the unit-impulse, as
the derivative of the unit-step, must occur at t = 0. The unit-impulse and the unit-
step signals enable us to represent and analyze signals with discontinuities as we do
with continuous signals. For example, these signals model the commonly occurring
situations such as opening and closing of switches.

The continuous unit-impulse §(¢) is difficult to visualize and impossible to realize
in practice. However, the approximation of it by some functions is effective in
practice and can be used to visualize its effect on signals and its properties. While
there are other functions that approach an impulse in the limit, the rectangular
function is often used to approximate the impulse. The unit-impulse, for all practical
purposes, is essentially a narrow rectangular pulse with unit area. Suppose we
compress it by a factor of 2, the area, called its strength, becomes 1/2 = 0.5. The
scaling property of the impulse is given as

S(at) = L<S(t), a#0
la|

With a = —1, §(—t) = §(¢) implies that the impulse is an even-symmetric signal.

For example,
1 1 1
§@tr—1)=6(3[r—= =-5(t— =
3 3 3

The discrete unit-impulse signal, shown in Fig. 1.1a, is defined as

1forn=0

8(n):{0forn7é0

The independent variable is n and the dependent variable is §(n). The only
nonzero value (unity) of the impulse occurs when its argument n = 0. The shifted

impulse § (n — k) has its only nonzero value at n = k. Therefore, ZZO:_ o XM —

1 e e o o o o

da(n)
u(n)
r(n)

op ° Op o o
3-2-101 23 2-10123 45 2-10123 45
no(a) n (b no (o)

Fig. 1.1 (a) The discrete unit-impulse signal, §(n); (b) the discrete unit-step signal, u(n); and (c)
the discrete unit-ramp signal, r(n)
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k) = x(k) is called the sampling or sifting property of the impulse. For example,

o0 2 0
> 3sm) =1, ) 9"8(n+1) =0, Y 4"8(-n—1)=0.25,

n=—oo n=0 n=-—2

2 00 [ee]
Y 2sn—1 =2, > 2'6(n+1)=05 Y 3"8(n—3)=27

n=0 n=-—00 n=—00

The argument n + 1 of the impulse, in the second summation, never becomes zero
within the limits of the summation.

1.1.2  Unit-Step Signal

The discrete unit-step signal, shown in Fig. 1.1b, is defined as

u(n)z{lfornzo

0forn <0

For positive values of its argument, the value of the unit-step signal is unity and it is
zero otherwise. An arbitrary function can be expressed in terms of appropriately
scaled and shifted unit-step or impulse signals. By this way, any signal can be
specified, for easier mathematical analysis, by a single expression, valid for all n.
For example, a pulse signal, shown in Fig. 1.2a, with its only nonzero values defined
as {x(1) = 1,x(2) = 1, x(3) = 1}, can be expressed as the sum of the two delayed
unit-step signals shown in Fig. 1.2b, x(n) = u(n — 1) —u(n —4). The pulse can also
be represented as a sum of delayed impulses.

3
x(n)=un—1)—u(n —4) =Z(S(n—k) =8(n—1)+8n—2)+8(n—73)
k=1
1 . . . 1 > O
x(n)=u(n-1)-u(n-4) _ u(n-1)
Y
S
—~ =
3 "0 X X X X X
8 =
&
= -u(n-4)
0 . . . . - x X
-1 0 1 2 3 4 5 20 -1 0 1 2 3 4 5
n (a) n (b)

Fig. 1.2 (a) The pulse signal, x(n) = u(n — 1) — u(n — 4) and (b) the delayed unit-step signals,
un —1)and —u(n — 4)



1.1 Basic Signals 5

The continuous unit-step signal is defined as

1 fort >0
u(t) =10 fort <0
undefined fortr =0

The value u(0) is undefined and can be assigned a suitable value from O to 1 to
suit a specific problem. In Fourier analysis, #(0) = 0.5. A common application of
the unit-step signal is that multiplying a signal with it yields the causal form of the
signal. For example, the continuous signal sin(¢) is defined for —oo < ¢t < oo. The
values of sin(#)u(t) is zero for t < 0 and sin(z) for ¢t > 0.

1.1.3 Unit-Ramp Signal

The discrete unit-ramp signal, shown in Fig. 1.1c, is also often used in the analysis
of signals and systems. It is defined as

rn) = {n forn >0
0 forn <0
It linearly increases for positive values of its argument and is zero otherwise.

The three signals, the unit-impulse, the unit-step, and the unit-ramp, are related
by the operations of sum and difference. The unit-impulse signal é(n) is equal to
u(n) —u(m — 1), the first difference of the unit-step. The unit-step signal u(n) is
equal to > 7o 8(n — k), the running sum of the unit-impulse. The shifted unit-step
signal u(n — 1) is equal to r(n) — r(n — 1). The unit-ramp signal r (n) is equal to

00 n—1
r(n) =nun) =Y ks(n—k)= Y u(k)
k=0 k=—00

Similar relations hold for continuous type of signals.

1.1.4 Sinusoids and Complex Exponentials
1.1.4.1 Sinusoids
The impulse and the sinusoid are the two most important signals in signal and

system analysis. The impulse is the basis for convolution and the sinusoid is the
basis for transfer function. The cosine and sine functions are two of the most



