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Introduction

Databases, websites, and business applications need to exchange data.
This is accomplished by defining standard data formats such as Extensible
Markup Language (XML) or JavaScript Object Notation (JSON), as

well as transfer protocols or web services such as the Simple Object
Access Protocol (SOAP) or the more popular Representational State
Transfer (REST). Developers often have to design their own Application
Programming Interfaces (APIs) to make applications work while
integrating specific business logic around operating systems or servers.
This book introduces these concepts with a focus on RESTful APIs.

This book introduces the data exchange mechanism and common data
formats. For web exchange, you will learn the HTTP protocol, including
how to use XML. This book compares SOAP and REST and then covers
the concepts of stateless transfer. It introduces software API design and
best design practices. The second half of the book focuses on RESTful API
design and implementations that follow the Micronaut and Java API for
RESTful web services. You will learn how to build and consume Micronaut
services using JSON and XML and integrate RESTful APIs with different
data sources like relational databases and NoSQL databases through
hands-on exercises. You will apply these best practices to complete a
design review of publicly available APIs with a small-scale software system
in order to design and implement RESTful APIs.

This book is intended for software developers who use data in projects.
It is also useful for data professionals who need to understand the methods
of data exchange and how to interact with business applications. Java
programming experience is required for the exercises.

xvii



INTRODUCTION

Topics covered in this book include
Data exchange and web services
SOAP vs. REST, state vs. stateless
XML vs. JSON
Introduction to API design: REST and Micronaut
API design practices
Designing RESTful APIs
Building RESTful APIs
Interacting with RDBMS (MySQL)

Consuming RESTful APIs (i.e., JSON and XML)
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CHAPTER 1

Fundamentals
of RESTful APls

APIs are not new. They've served as interfaces that enable applications

to communicate with each other for decades. But the role of APIs has
changed dramatically in the last few years. Innovative companies

have discovered that APIs can be used as an interface to the business,
allowing them to monetize digital assets, extend their value proposition
with partner-delivered capabilities, and connect to customers across
channels and devices. When you create an API, you are allowing others
within or outside of your organization to make use of your service or
product to create new applications, attract customers, or expand their
business. Internal APIs enhance the productivity of development teams
by maximizing reusability and enforcing consistency in new applications.
Public APIs can add value to your business by allowing third-party
developers to enhance your services or bring their customers to you. As
developers find new applications for your services and data, a network
effect occurs, delivering significant bottom-line business impact. For
example, Expedia opened up their travel booking services to partners
through an API to launch the Expedia Affiliate Network, building a new
revenue stream that now contributes $2B in annual revenue. Salesforce
released APIs to enable partners to extend the capabilities of their platform
and now generates half of their annual revenue through those APIs, which
could be SOAP-based (JAX-WS) and, more recently, RESTful (JAX-RS),
Spring Boot, and now Micronaut.

© Sanjay Patni 2025
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CHAPTER 1  FUNDAMENTALS OF RESTFUL APIS

SOAP web service depends upon a number of technologies (such as
UDDI, WSDL, SOAP, and HTTP) and protocols to transport and transform
data between a service provider and the consumer and can be created
with JAX-WS.

Later, Roy Fielding (in the year 2000) presented his doctoral
dissertation, “Architectural Styles and the Design of Network-based
Software Architecture.” He coined the term “REST,” an architectural
style for distributed hypermedia systems. Put simply, REST (short for
Representational State Transfer) is an architectural style defined to help
create and organize distributed systems. The key word from that definition
should be “style,” because an important aspect of REST (and which is one
of the main reasons books like this one exist) is that it is an architectural
style—not a guideline, not a standard, or anything that would imply that
there are a set of hard rules to follow in order to end up having a RESTful
architecture.

In this chapter, I'll be covering REST fundamentals, SOAP vs. REST, and
web architectural style to provide a solid foundation and better prepare
you for what you'll see in later chapters.

The main idea behind REST is that a distributed system, organized
RESTfully, will improve in the following areas:

e Performance: The communication style proposed by
REST is meant to be efficient and simple, allowing a
performance boost on systems that adopt it.

e Scalability of component interaction: Any distributed
system should be able to handle this aspect well
enough, and the simple interaction proposed by REST
greatly allows for this.

o Simplicity of interface: A simple interface allows for
simpler interactions between systems, which in turn
can grant benefits like the ones previously mentioned.
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Modifiability of components: The distributed nature
of the system, and the separation of concerns proposed
by REST (more on this in a bit), allows for components
to be modified independently of each other at a
minimum cost and risk.

Portability: REST is technology- and language-agnostic,
meaning that it can be implemented and consumed by
any type of technology (there are some constraints that I'll
go over in a bit, but no specific technology is enforced).

Reliability: The stateless constraint proposed by REST
(more on this later) allows for the easier recovery of a
system after failure.

Visibility: Again, the stateless constraint proposed has
the added full state of said request (this will become clear
once I talk about the constraints in a bit). From this list,
some direct benefits can be extrapolated. A component-
centric design allows you to make systems that are very
fault-tolerant. Having the failure of one component not
affecting the entire stability of the system is a great benefit
for any system. Interconnecting components is quite easy,
minimizing the risks when adding new features or scaling
up or down. A system designed with REST in mind will

be accessible to a wider audience, thanks to its portability
(as described earlier). With a generic interface, the system
can be used by a wider range of developers. In order to
achieve these properties and benefits, a set of constraints
were added to REST to help define a uniform connector
interface. REST is not suggested to be used when you
need to enforce a strict contract between the client and
server and when performing transactions that involve
multiple calls.
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FUNDAMENTALS OF RESTFUL APIS

SOAP vs. REST

Table 1-1 provides a comparison between SOAP and REST with an

example of use cases each can support.

Table 1-1. SOAP vs. REST comparison

Topic SOAP REST

Origin SOAP (Simple Object Access REST (Representational State
Protocol) was created in 1998 by Transfer) was created in 2000
Dave Winer et al. in collaboration by Roy Fielding at UC, Irvine.
with Microsoft. Developed by a large Developed in an academic
software company, this protocol environment, this protocol
addresses the goal of addressing embraces the philosophy of the
the needs of the enterprise market  Open Web

Basic Makes data available as services Makes data available as resources

concept  (verb + noun), for example, (nouns), for example, “user” or
“getUser” or “Paylnvoice” “invoice”

Pros Follows a formal enterprise Follows the philosophy of the

approach

Works on top of any communication
protocol, even asynchronously
Information about objects is
communicated to clients

Security and authorization are part
of the protocol

Can be fully described using WSDL

Open Web

Relatively easy to implement and
maintain

Clearly separates client and server
implementations

Communication isn’t controlled by
a single entity

Information can be stored by the
client to prevent multiple calls
Can return data in multiple
formats (JSON, XML, etc.)

(continued)





