Pro RESTful APls
with Micronaut

Build Java-Based Microservices with
REST JSON, and XML

Third Edition

Sanjay Patni

ApPress:

Pro RESTful APIls with
Micronaut

Sanjay Patni

Apress’

Pro RESTful APIs with Micronaut: Build Java-Based Microservices with
REST, JSON, and XML, Third Edition

Sanjay Patni
Milpitas, CA, USA

ISBN-13 (pbk): 979-8-8688-1242-2 ISBN-13 (electronic): 979-8-8688-1243-9
https://doi.org/10.1007/979-8-8688-1243-9

Copyright © 2025 by Sanjay Patni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: Laura Berendson

Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image designed by FlyD on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1243-9

I would like to thank everyone at Apress who I have
worked closely with. Thanks to the reviewers, their in-depth
reviews helped the quality of the book. A heartfelt thanks
goes to my wife, Veena, for her tireless and unconditional
support that helped me work on this book. A huge thanks
goes to my father, Ajit Kumar Patni, and my mother,
late Basantidevi, for their selfless support that helped
me reach where I am today.

Table of Contents

About the AUthOrc.cccmmmssmmmmssmsmmsssssssss s ssanssssnnss xiii
About the Technical REVIEWETcusesssssmsssssnsssssasssssanssssanssssanssssansnss Xv
Introduction........cccccnnmmmnssmnmsssnnmsssnsmssssnssssnsssssnsssssnnssssnnnnssnnnnssnnnnnnns Xvii
Chapter 1: Fundamentals of RESTful APISccccunsemmnmnssssnnnsssssssnnnnsns 1
SOAP VS. BEST ...t s s ssssssssssssasesesssssssssssasssanas 4
Web Architectural Style.........cccvverrcrrrser e 6
ClIENT=SBIVEN ... s 7
Uniform Resource INterface..........coccovvenrninncsnnsnesesesessesese s 7
Layered SYSIBM........cccvvrie s 7

0 T 11 o S 8
STALBIESS......ceceercer s 8
C0de-0N-DeMANGcceererererreree e 8
HATEQAS.......cootititeiririresesesesesese st se s nas 9
WHAL IS REST?......cccccceesssss s sssssss s s e s sssssssssssssssssssssssnnns 10
REST BaSICS.....ccrerueerreereeesesesessesessesesessesessssessesesessssessssessssesessesessenssssnsssnnes 11
REST FUNAAMENTAS ..o 12
SUMMANY.....eieeeererere e r e e s e re e e e 14
Chapter 2: Micronaut.........cccceurremmsssssssssssnmmmssssssssssssssssssssssssssssnssnssnnes 15
Comparison of Micronaut with Spring Boot ... 16
Ease of INStallationcccoveevrienerese s 16
Natively Cloud Enabled...........ccocvererirnnnenneseresessse e 17

TABLE OF CONTENTS

Serverless FUNCHIONS ... 17
Application Configurationccvrvvrrrieriennsnseresr e 18
Messaging System SUPPOM........ccvvvvvrrrienn e saes 19
LT 1]) RS 20

072 T 1] T 21
Management and MoNitoringccccvevvnnerininnn e 21
APIPOITONIO ..vovveeeerereresesesesese e e s s s snsnsnas 22
ONliNg FlgNtcoveriireccr e e 22
MESSAGEceeircriecie s e e s 23

RS0 117 T 24
1T 0] L T 24
DK 2T e e e e 25
POSTMANoovitirirrrrerrreresesesesesese e ss s s s ssss s e e e e e sesnssasssanas 25
CURL ... se e sttt 25
IDE ... e 25
MAVEN ... e 26
SUMMANY....ceeiecerrrisere s s e e s e e e nre e s 27
Chapter 3: Introduction: XML and JSONc.ccccmmmsssnnnnmnssssnnssssssnnnns 29
WRAL IS XIML? ...ttt st e 29
XML COMIMENTScovverrrreerrenerrsesessessssesessssessssessssessssssessssessssssssssssssssensnsenees 31
Why Is XML IMPOrtant?.........cccoveeenennennnsesnesssssessssessssessssessssssessssessssenens 32
How Can YOU USE XIML?.......ccceverereserinesssseses s s s s e s sessnnes 33
Pros and Cons Of XML.........ccouceerenernnmnnessnenesssessssessssessssesessssesessessssssessnnes 33
WRAL IS JSON? ... 34
JSON SYNEAX......oeiiririererr e saese e nne s 35
Why IS JSON IMPOrtant?.........cccvierennrnienennsersene s sessessessessssessessens 37
How Can You USe JSON? ... sesssssssss 38

TABLE OF CONTENTS

Pros and Cons 0f JSON.........ccccrrrmmnmnnr s sssees 38
XML and JSON COMPAISON......ciiiererererssrsssmsesessssssssssesessssssssssssesssssssssesens 39
Implementing APIs to Return XML and JSON MeSSages.........couveverrererrererenserenns 41
SUMMANY.....eieeeeerere e e e r e e s e s re e sr e e 45
Chapter 4: APl Design and Modelingcccccunnnssssmssmmsmmsssssssssssssssnns 47
APl DESIgN Strategies.....courerrerrrrrserersesersesesrssesesesessesessssesessesssssessssesesssssssssessenes 47
API Creation Process and Methodologyccucvvenrnsennnensnesensse s 49
PrOCESS ... ccveeeererre s 50
API Methodology........cccvrererreserererresessese s s s sre s sre e e s s ssssensesnens 50
Domain Analysis or APl DeSCriplion.........cccoueverenernsesnesenssesssesessesessesessnnes 51
ArchiteCture DESIgNcccevveerierrne s ssenens 52
PrototyPing ...covcceerciree e s 53
IMPIEMENTALION ... —— 53
PUBIISH....e st 54
Do 0T T T o RS 54
Comparison of AP MOCeliNg.........cooueevererernsernesesesesssesssesess e sessesessnnes 56

IN SUMMANY ...t e 57
BESt PracliCesc.cvvuiiiisiririnsscs s s 58
Keep Your Base URL Simple and INtUItive.........cccvevenvenienennnensenne e sessenenees 58

1T 4] - R 59
o0 Lo 1T o R 60
0] LN 61

{12 £ (0] o S 62
Partial RESPONSE.......cccvveruerrererrererests s sse s e sse e s e sse e sse e s e saesaeses e saesaes 63
PaginAlioN.......ccvcerercrere s 64
MUHIPIE FOrMALSccercereresir et sne s s 64

D o o o o LSOO 65

vii

TABLE OF CONTENTS

API Solution ArChItECIUNEc.ceeereririeccri i 65
MoDile SOIULIONS ..o s 66
Cloud SOIULIONS......cccovriiriirrerrrrs s 67
WeD SOIULIONS.......ccceiriricc e 67
Integration SOIUTIONScccviriererr e s 67
Multichannel SOIUIONS ... 67
SMArt TV SOIULIONScvvccccreriesee s 68
Internet of TRINGS ..o e 68

Stakeholders in APl SOIULIONSccooeoerererercrree s 68
L o I 01V L] R 68
AP CONSUMETScueueererrsseseesesessssessssesesssssssssessssssssssssssssssssssssssessssssssssens 68
o010 0] 69

L o 100 1= 1o 69
OPENAPI (SWAGGET)....ueeeueerreerreerenesesseesseesessesessesesessesesseessssesessessssssessanes 69

SUMMANY....ceeiecerrrisere s s e e s e e e nre e s 76

Chapter 5: Introduction to JAX-RScccciiminmmmmmmnsssnnnmnsssssnnmsssssnnns 77

JAX-RS INtrodUCHION........ccervieriresireserrs e 77

Input and Output Content TYPE......cccvervrrrrierr e nnens 79

JAX-RS INJECHION ...veveereree e sersere s e sse s ss s s ss e e s s saesse e snessesaesssessesnees 79

Path Parameter ..o 81

QUErY Parameter ..o s 81

CoOoKie Parameter ... s 82

Header Parameter...........cocveeennsenseresesense s s nse s 82

FOrm Parameter ... s 82

Matrix Parameter ... 82

Micronaut Implementation of JAX-RS.......cccorrrrrrinrrr e 83

Supported ANNOTALIONS........cccovivrrrr e —————— 84

viii

TABLE OF CONTENTS

Injectable Parameter TYPES.......ccccvvrvrnrinin e 85
SecurityContext and Micronaut Security........ccccvrevrnvnnrcsrnccvn e 86
SUMMANY.....eieeeeerere e e e r e e s e s re e sr e e 86
Chapter 6: API Portfolio and Frameworkuusseeesmmssesssssssssssssnssnnas 87
APl Portfolio ArChiteCIUrecccvvcerrcsercer s 87
REQUITEMENTScoveiriirir e e s 87

L8] 1] (=] 3T RS 88
REUSE.....ceireerireressese s e 88
LTS3 (0] 01 T2 L0 o S 88
DiSCOVEIADIIITY ...cvveeerreerenereseresese e s s e s s nrnnes 89
(T o Y RS 89
How Do We Enforce These Requirements—Governance?ccovvereerennes 89

0] ST (=] 0TS 89
REUSE.....ceirierirerenses s e 90
LTS3 (0] 01 T2 L0 o RS 90
DiSCOVEIADIIITY ...cvveeerreerenereseresese e s s e s s nrnnes 90
Change Managementcocvvernnnmnenmsnsesessesessse s s sessssessnns 90
APLFrameWOrK.......c.ccoieiierereresesene s s s)
Process APIS: SErVICES LAYcccvvrernesrnenesesesssessssesssssse s sessessssesessnnes 93
System APIs: Data Access ODJECtcccccrvvrnncnnnsens e 93
Experience APIS: APl FAGade...........couuerenerermnnssssesessssssse s sessssssens 93
Services Layer Implementation...........cccccvvcvnenncsnnssnesnsse e 94
SUMMAIY.c.veitiiriere et s ss e e s e s sae e e e s e s aesae e s e e aesae e e e nannaees 101

Chapter 7: APl Platform and Data Handlerccccemmnnrnnssssssssnnnnnnnns 103

API Platform ArChitECIUIE.....cvcveveiii e n e snne s 103
Why Do We Need an API PIAtfOrm? ... 104
S0 What IS an APl PIatform?.......cecveirieerieereseessssessssesssseessseesssessssesssesssssessnees 104

ix

TABLE OF CONTENTS

So Which Capabilities Does the API Platform Have?ccccvvvvvvrierenenneniennens 105
API Development Platformcccveincnininsnsnscsess s 105
APl RUNTIME PIatfOrm.......eeeeeeeece e 107
APl Engagement Platformc.cocovenrnsnnesensse s sessesessenens 107
How Is an API Platform Organized? What Is the Architecture of the
LI (0] 1 1 1 108
How Does the API Architecture Fit in the Surrounding Technical
Architecture of an ENterprise? ... 110
Data HANAIEKooeeeeeeeeeereere e 112
Data ACCESS ODJECTccevereereerr e s 112
Command Query Responsibility Segregation (CQRS)..........cccorvvernrererienerensennnns 113
SQL DeVelopmMENT PrOCESSccvvererrerrrsersersersssessessessessssessessesssssssessessessssessessens 113
NOSQL PrOCESS.....courvrriuiueeseresssssssesesessssssssssssesssssssssssssssssssssssssessssssssssesssssnsaes 114
Do I Have to Choose Between SQL and NOSQL?cocoevevnnsnnnnnnssssnesesenenes 114
Why @ Single REST API? ... sssssssssssssssssssnnns 115
SUMMANY ...t e s e s e nenssnenns 133
Chapter 8: APl Management and CORSccccccmnnsssnnnnmsssssnnnnssssnns 135
FAGAOL ...t ————— 135
Fagade Pattern..........ccocucvcrenennsene s s 135
o N T 1o [T 136
API Management..........coocvviininninese s s 139
APLLifE CYCIE ..o 140
APl REEIr@MEeNt ... 141
API MONELZALIONcovreeecrcerieese e 142
Cross-0rigin Resource Sharing (CORS)........coovvrvrierenennensenessesessessessesessessessens 143
SUMMAIY.c.veitetrerere e e re e sre s e e s s s s e e e s e s s saese e e saesaesae e s e saesae s eenaesaens 143

TABLE OF CONTENTS

Chapter 9: APl SeCUIitYcccuuremrrrmssnnnmmssssssnsssssssnssssssssnsssssssnnnnssssnnns 145
APl Security—O0AULh 2. 145
3T0] TS 146
TOKENScuciereeerreeressesessesesse s e s e s e e e s e sse e re e e e e sae e nse e s e e nenansnnnnanns 146
Register as @ Client ... 148
Client Registration.........c.ccocvvrriniernnnsersene s ses s sssses e ssessssessesnens 148
Authorization Server RESPONSE......ccvevvrerrereressssersesessssessessesssssssessesssssssessesses 149
Authorization Grant TYPES ...c..ccceerererercrnierire e se s ses e sesnenens 149
Authorization Code Grantcccoeeerrrrrenerese s 149
When Should It Be USEA?.........ccoverrenereerssesesesessse s sessssesssnens 149
IMPLCIt Grant FIOWcccoiiiircerscsrncsee e 151
When Should It Be USEA?.........ccceevnirincise s snsnans 151
Resource Owner Password Credentials Grantcooooevevnernnnncscsenesnnenes 153
When Should It Be USEA?.........cceerrererrnecncseressse e e sssesesessns 154
Client Credentials Grantc.occoeeernecnneneresere e 155
APl Security—JSON Webh TOKEN.........cccoveerereneresersesess s sessesessenens 157
SUMMANY ..ot r e e p e e e npn e 162

INA@X . iiiiisssnnnnnnnnnnnsssssssssnnnnnnnnssssssssnnnnnnnnnsssssssssnnnnnnnsnsssssssnnnnnnnnnnsssssnnn 163

About the Author

Sanjay Patni is a results-focused technologist
with extensive experience in aligning
innovative technology solutions with business
needs to optimize manual steps in the
business processes and improving operational
efficiency.

At Oracle, he has worked with the Fusion
Apps Product development team, where he
has identified opportunities for automation

of programs related to Fusion Apps codeline
management. This involved delivery of GA releases for patching, as well as
codelines for ongoing demo, development, and testing. He conceptualized
and developed self-service UX for codeline requests and auditing,
reducing manual steps by 80%. He also rolled out 12 sprints of codeline
creation, automating about 100+ manual steps involving integration
with other subsystems using technologies like automation workflow and
RESTful APIs.

Prior to joining Oracle, he spent 15+ years in the software industry,
defining and delivering key initiatives across different industry sectors.
His responsibilities included innovation, requirement, analysis, technical
architecture, design, and agile software development of web-based
enterprise products and solutions. He pioneered innovative usage of
Java in building business applications and received an award from Sun
Microsystems. This helped improve feedback for Java APIs for Enterprise
in building business application software using Java. He has diverse
experience in application architecture including UX, distributed systems,
and cloud.

xiii

ABOUT THE AUTHOR

He has worked as a visiting technical instructor or mentor and
conducted classes or training on RESTful API design and integration.

He has a strong educational background in computer science with
a master’s from IIT, Roorkee, India and bachelor’s in Electronics from
SGSITS, Indore, India.

Xiv

About the Technical Reviewer

Massimo Nardone has more than 26 years

of experience in security, web/mobile
development, and cloud and IT architecture.
His true IT passions are security and Android.
He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than

25 years. He holds a Master of Science degree
in Computing Science from the University

of Salerno, Italy. He has worked as a chief
information security officer (CISO), software
engineer, chief security architect, security
executive, and OT/IoT/IIoT security leader and
architect for many years.

Introduction

Databases, websites, and business applications need to exchange data.
This is accomplished by defining standard data formats such as Extensible
Markup Language (XML) or JavaScript Object Notation (JSON), as

well as transfer protocols or web services such as the Simple Object
Access Protocol (SOAP) or the more popular Representational State
Transfer (REST). Developers often have to design their own Application
Programming Interfaces (APIs) to make applications work while
integrating specific business logic around operating systems or servers.
This book introduces these concepts with a focus on RESTful APIs.

This book introduces the data exchange mechanism and common data
formats. For web exchange, you will learn the HTTP protocol, including
how to use XML. This book compares SOAP and REST and then covers
the concepts of stateless transfer. It introduces software API design and
best design practices. The second half of the book focuses on RESTful API
design and implementations that follow the Micronaut and Java API for
RESTful web services. You will learn how to build and consume Micronaut
services using JSON and XML and integrate RESTful APIs with different
data sources like relational databases and NoSQL databases through
hands-on exercises. You will apply these best practices to complete a
design review of publicly available APIs with a small-scale software system
in order to design and implement RESTful APIs.

This book is intended for software developers who use data in projects.
It is also useful for data professionals who need to understand the methods
of data exchange and how to interact with business applications. Java
programming experience is required for the exercises.

xvii

INTRODUCTION

Topics covered in this book include
Data exchange and web services
SOAP vs. REST, state vs. stateless
XML vs. JSON
Introduction to API design: REST and Micronaut
API design practices
Designing RESTful APIs
Building RESTful APIs
Interacting with RDBMS (MySQL)

Consuming RESTful APIs (i.e., JSON and XML)

xviii

CHAPTER 1

Fundamentals
of RESTful APls

APIs are not new. They've served as interfaces that enable applications

to communicate with each other for decades. But the role of APIs has
changed dramatically in the last few years. Innovative companies

have discovered that APIs can be used as an interface to the business,
allowing them to monetize digital assets, extend their value proposition
with partner-delivered capabilities, and connect to customers across
channels and devices. When you create an API, you are allowing others
within or outside of your organization to make use of your service or
product to create new applications, attract customers, or expand their
business. Internal APIs enhance the productivity of development teams
by maximizing reusability and enforcing consistency in new applications.
Public APIs can add value to your business by allowing third-party
developers to enhance your services or bring their customers to you. As
developers find new applications for your services and data, a network
effect occurs, delivering significant bottom-line business impact. For
example, Expedia opened up their travel booking services to partners
through an API to launch the Expedia Affiliate Network, building a new
revenue stream that now contributes $2B in annual revenue. Salesforce
released APIs to enable partners to extend the capabilities of their platform
and now generates half of their annual revenue through those APIs, which
could be SOAP-based (JAX-WS) and, more recently, RESTful (JAX-RS),
Spring Boot, and now Micronaut.

© Sanjay Patni 2025
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_1

https://doi.org/10.1007/979-8-8688-1243-9_1#DOI

CHAPTER 1 FUNDAMENTALS OF RESTFUL APIS

SOAP web service depends upon a number of technologies (such as
UDDI, WSDL, SOAP, and HTTP) and protocols to transport and transform
data between a service provider and the consumer and can be created
with JAX-WS.

Later, Roy Fielding (in the year 2000) presented his doctoral
dissertation, “Architectural Styles and the Design of Network-based
Software Architecture.” He coined the term “REST,” an architectural
style for distributed hypermedia systems. Put simply, REST (short for
Representational State Transfer) is an architectural style defined to help
create and organize distributed systems. The key word from that definition
should be “style,” because an important aspect of REST (and which is one
of the main reasons books like this one exist) is that it is an architectural
style—not a guideline, not a standard, or anything that would imply that
there are a set of hard rules to follow in order to end up having a RESTful
architecture.

In this chapter, I'll be covering REST fundamentals, SOAP vs. REST, and
web architectural style to provide a solid foundation and better prepare
you for what you'll see in later chapters.

The main idea behind REST is that a distributed system, organized
RESTfully, will improve in the following areas:

e Performance: The communication style proposed by
REST is meant to be efficient and simple, allowing a
performance boost on systems that adopt it.

e Scalability of component interaction: Any distributed
system should be able to handle this aspect well
enough, and the simple interaction proposed by REST
greatly allows for this.

o Simplicity of interface: A simple interface allows for
simpler interactions between systems, which in turn
can grant benefits like the ones previously mentioned.

CHAPTER 1 FUNDAMENTALS OF RESTFUL APIS

Modifiability of components: The distributed nature
of the system, and the separation of concerns proposed
by REST (more on this in a bit), allows for components
to be modified independently of each other at a
minimum cost and risk.

Portability: REST is technology- and language-agnostic,
meaning that it can be implemented and consumed by
any type of technology (there are some constraints that I'll
go over in a bit, but no specific technology is enforced).

Reliability: The stateless constraint proposed by REST
(more on this later) allows for the easier recovery of a
system after failure.

Visibility: Again, the stateless constraint proposed has
the added full state of said request (this will become clear
once I talk about the constraints in a bit). From this list,
some direct benefits can be extrapolated. A component-
centric design allows you to make systems that are very
fault-tolerant. Having the failure of one component not
affecting the entire stability of the system is a great benefit
for any system. Interconnecting components is quite easy,
minimizing the risks when adding new features or scaling
up or down. A system designed with REST in mind will

be accessible to a wider audience, thanks to its portability
(as described earlier). With a generic interface, the system
can be used by a wider range of developers. In order to
achieve these properties and benefits, a set of constraints
were added to REST to help define a uniform connector
interface. REST is not suggested to be used when you
need to enforce a strict contract between the client and
server and when performing transactions that involve
multiple calls.

CHAPTER 1

FUNDAMENTALS OF RESTFUL APIS

SOAP vs. REST

Table 1-1 provides a comparison between SOAP and REST with an

example of use cases each can support.

Table 1-1. SOAP vs. REST comparison

Topic SOAP REST

Origin SOAP (Simple Object Access REST (Representational State
Protocol) was created in 1998 by Transfer) was created in 2000
Dave Winer et al. in collaboration by Roy Fielding at UC, Irvine.
with Microsoft. Developed by a large Developed in an academic
software company, this protocol environment, this protocol
addresses the goal of addressing embraces the philosophy of the
the needs of the enterprise market Open Web

Basic Makes data available as services Makes data available as resources

concept (verb + noun), for example, (nouns), for example, “user” or
“getUser” or “Paylnvoice” “invoice”

Pros Follows a formal enterprise Follows the philosophy of the

approach

Works on top of any communication
protocol, even asynchronously
Information about objects is
communicated to clients

Security and authorization are part
of the protocol

Can be fully described using WSDL

Open Web

Relatively easy to implement and
maintain

Clearly separates client and server
implementations

Communication isn’t controlled by
a single entity

Information can be stored by the
client to prevent multiple calls
Can return data in multiple
formats (JSON, XML, etc.)

(continued)

