

Praise for Learning LangChain

With clear explanations and actionable techniques, this is
the go-to resource for anyone looking to harness
LangChain’s power for production-ready generative AI and
agents. A must-read for developers aiming to push the
boundaries of this platform.

—Tom Taulli, IT consultant and author of AI-
Assisted Programming

This comprehensive guide on LangChain covers everything
from document retrieval and indexing to deploying and
monitoring AI agents in production. With engaging
examples, intuitive illustrations, and hands-on code, this
book made learning LangChain interesting and fun!

—Rajat K. Goel, senior software engineer, IBM

This book is a comprehensive LLM guide covering
fundamentals to production, packed with technical insights,
practical strategies, and robust AI patterns.

—Gourav Singh Bais, senior data scientist and
senior technical content writer, Allianz

Services

Prototyping generative AI apps is easy—shipping them is
hard. The strategies and tools in Learning LangChain make
it possible to turn ideas into modern, production-ready
applications.

—James Spiteri, director of product
management for security, Elastic

Learning LangChain provides a clear path for transforming
how you build AI-powered applications. By breaking down
flexible architectures and robust checkpointing, it offers a
strong foundation for creating reliable, production-ready AI
agents at scale.

—David O’Regan, engineering manager for
AI/ML, GitLab

Learning LangChain helped us skip the boilerplate for
debugging and monitoring. The many helpful patterns and
tooling insights allowed us to move fast and deploy AI apps
with confidence.

—Chris Focke, chief AI scientist, AppFolio

Teaching LangChain through clear, actionable examples,
this book is a gateway to agentic applications that are as
inspiring as Asimov’s sci-fi novels.

— Ilya Meyzin, SVP head of data science, Dun
& Bradstreet

Learning LangChain

Building AI and LLM Applications with LangChain and
LangGraph

Mayo Oshin and Nuno Campos

Learning LangChain

by Mayo Oshin and Nuno Campos

Copyright © 2025 Olumayowa “Mayo” Olufemi Oshin. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield

Development Editor: Corbin Collins

Production Editor: Clare Laylock

Copyeditor: nSight, Inc.

Proofreader: Helena Stirling

Indexer: Judith McConville

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

February 2025: First Edition

Revision History for the First Edition

2024-02-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098167288 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Learning LangChain, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and
do not represent the publisher’s views. While the publisher and
the authors have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of

http://oreilly.com/catalog/errata.csp?isbn=9781098167288

or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.
978-1-098-16728-8

[LSI]

Preface

On November 30, 2022, San Francisco–based firm OpenAI
publicly released ChatGPT—the viral AI chatbot that can
generate content, answer questions, and solve problems like a
human. Within two months of its launch, ChatGPT attracted
over 100 million monthly active users, the fastest adoption rate
of a new consumer technology application (so far). ChatGPT is a
chatbot experience powered by an instruction and dialogue-
tuned version of OpenAI’s GPT-3.5 family of large language
models (LLMs). We’ll get to definitions of these concepts very
shortly.

NOTE

Building LLM applications with or without LangChain requires the use of an LLM. In
this book we will be making use of the OpenAI API as the LLM provider we use in the

code examples (pricing is listed on its platform). One of the benefits of working with
LangChain is that you can follow along with all of these examples using either
OpenAI or alternative commercial or open source LLM providers.

Three months later, OpenAI released the ChatGPT API, giving
developers access to the chat and speech-to-text capabilities.
This kickstarted an uncountable number of new applications

https://oreil.ly/uAnsr
https://oreil.ly/ATsLe
https://oreil.ly/-YYoR
https://oreil.ly/DwU7R

and technical developments under the loose umbrella term of
generative AI.

Before we define generative AI and LLMs, let’s touch on the
concept of machine learning (ML). Some computer algorithms
(imagine a repeatable recipe for achievement of some
predefined task, such as sorting a deck of cards) are directly
written by a software engineer. Other computer algorithms are
instead learned from vast amounts of training examples—the
job of the software engineer shifts from writing the algorithm
itself to writing the training logic that creates the algorithm. A
lot of attention in the ML field went into developing algorithms
for predicting any number of things, from tomorrow’s weather
to the most efficient delivery route for an Amazon driver.

With the advent of LLMs and other generative models (such as
diffusion models for generating images, which we don’t cover
in this book), those same ML techniques are now applied to the
problem of generating new content, such as a new paragraph of
text or drawing, that is at the same time unique and informed
by examples in the training data. LLMs in particular are
generative models dedicated to generating text.

LLMs have two other differences from previous ML algorithms:

They are trained on much larger amounts of data; training
one of these models from scratch would be very costly.
They are more versatile.

The same text generation model can be used for
summarization, translation, classification, and so forth,
whereas previous ML models were usually trained and used for
a specific task.

These two differences conspire to make the job of the software
engineer shift once more, with increasing amounts of time
dedicated to working out how to get an LLM to work for their
use case. And that’s what LangChain is all about.

By the end of 2023, competing LLMs emerged, including
Anthropic’s Claude and Google’s Bard (later renamed Gemini),
providing even wider access to these new capabilities. And
subsequently, thousands of successful startups and major
enterprises have incorporated generative AI APIs to build
applications for various use cases, ranging from customer
support chatbots to writing and debugging code.

On October 22, 2022, Harrison Chase published the first commit
on GitHub for the LangChain open source library. LangChain
started from the realization that the most interesting LLM

https://oreil.ly/mCdYZ

applications needed to use LLMs together with “other sources
of computation or knowledge”. For instance, you can try to get
an LLM to generate the answer to this question:

How many balls are left after splitting 1,234 bal

You’ll likely be disappointed by its math prowess. However, if
you pair it up with a calculator function, you can instead
instruct the LLM to reword the question into an input that a
calculator could handle:

1,234 % 123

Then you can pass that to a calculator function and get an
accurate answer to your original question. LangChain was the
first (and, at the time of writing, the largest) library to provide
such building blocks and the tooling to reliably combine them
into larger applications. Before discussing what it takes to build
compelling applications with these new tools, let’s get more
familiar with LLMs and LangChain.

https://oreil.ly/uXiPi

Brief Primer on LLMs

In layman’s terms, LLMs are trained algorithms that receive
text input and predict and generate humanlike text output.
Essentially, they behave like the familiar autocomplete feature
found on many smartphones, but taken to an extreme.

Let’s break down the term large language model:

Large refers to the size of these models in terms of training
data and parameters used during the learning process. For
example, OpenAI’s GPT-3 model contains 175 billion
parameters, which were learned from training on 45
terabytes of text data. Parameters in a neural network
model are made up of the numbers that control the output of
each neuron and the relative weight of its connections with
its neighboring neurons. (Exactly which neurons are
connected to which other neurons varies for each neural
network architecture and is beyond the scope of this book.)
Language model refers to a computer algorithm trained to
receive written text (in English or other languages) and
produce output also as written text (in the same language or
a different one). These are neural networks, a type of ML
model which resembles a stylized conception of the human

1

brain, with the final output resulting from the combination
of the individual outputs of many simple mathematical
functions, called neurons, and their interconnections. If many
of these neurons are organized in specific ways, with the
right training process and the right training data, this
produces a model that is capable of interpreting the meaning
of individual words and sentences, which makes it possible
to use them for generating plausible, readable, written text.

Because of the prevalence of English in the training data, most
models are better at English than they are at other languages
with a smaller number of speakers. By “better” we mean it is
easier to get them to produce desired outputs in English. There
are LLMs designed for multilingual output, such as BLOOM,
that use a larger proportion of training data in other languages.
Curiously, the difference in performance between languages
isn’t as large as might be expected, even in LLMs trained on a
predominantly English training corpus. Researchers have found
that LLMs are able to transfer some of their semantic
understanding to other languages.

Put together, large language models are instances of big,
general-purpose language models that are trained on vast
amounts of text. In other words, these models have learned
from patterns in large datasets of text—books, articles, forums,

2

https://oreil.ly/Nq7w0

and other publicly available sources—to perform general text-
related tasks. These tasks include text generation,
summarization, translation, classification, and more.

Let’s say we instruct an LLM to complete the following
sentence:

The capital of England is _______.

The LLM will take that input text and predict the correct output
answer as London . This looks like magic, but it’s not. Under the
hood, the LLM estimates the probability of a sequence of
word(s) given a previous sequence of words.

TIP

Technically speaking, the model makes predictions based on tokens, not words. A
token represents an atomic unit of text. Tokens can represent individual characters,

words, subwords, or even larger linguistic units, depending on the specific
tokenization approach used. For example, using GPT-3.5’s tokenizer (called cl100k),
the phrase good morning dearest friend would consist of five tokens (using _ to show
the space character):

Good

With token ID 19045

_morning

With token ID 6693

_de

With token ID 409

arest

With token ID 15795

_friend

With token ID 4333

Usually tokenizers are trained with the objective of having the most common words
encoded into a single token, for example, the word morning is encoded as the token
6693 . Less common words, or words in other languages (usually tokenizers are
trained on English text), require several tokens to encode them. For example, the
word dearest is encoded as tokens 409, 15795 . One token spans on average four
characters of text for common English text, or roughly three quarters of a word.

https://oreil.ly/dU83b

The driving engine behind LLMs’ predictive power is known as
the transformer neural network architecture. The transformer
architecture enables models to handle sequences of data, such
as sentences or lines of code, and make predictions about the
likeliest next word(s) in the sequence. Transformers are
designed to understand the context of each word in a sentence
by considering it in relation to every other word. This allows
the model to build a comprehensive understanding of the
meaning of a sentence, paragraph, and so on (in other words, a
sequence of words) as the joint meaning of its parts in relation
to each other.

So, when the model sees the sequence of words the capital of
England is, it makes a prediction based on similar examples it
saw during its training. In the model’s training corpus the word
England (or the token(s) that represent it) would have often
shown up in sentences in similar places to words like France,
United States, China. The word capital would figure in the
training data in many sentences also containing words like
England, France, and US, and words like London, Paris,
Washington. This repetition during the model’s training
resulted in the capacity to correctly predict that the next word
in the sequence should be London.

3

The instructions and input text you provide to the model is
called a prompt. Prompting can have a significant impact on the
quality of output from the LLM. There are several best practices
for prompt design or prompt engineering, including providing
clear and concise instructions with contextual examples, which
we discuss later in this book. Before we go further into
prompting, let’s look at some different types of LLMs available
for you to use.

The base type, from which all the others derive, is commonly
known as a pretrained LLM: it has been trained on very large
amounts of text (found on the internet and in books,
newspapers, code, video transcripts, and so forth) in a self-
supervised fashion. This means that—unlike in supervised ML,
where prior to training the researcher needs to assemble a
dataset of pairs of input to expected output—for LLMs those
pairs are inferred from the training data. In fact, the only
feasible way to use datasets that are so large is to assemble
those pairs from the training data automatically. Two
techniques to do this involve having the model do the following:

Predict the next word

Remove the last word from each sentence in the training
data, and that yields a pair of input and expected output,
such as The capital of England is ___ and London.

Predict a missing word

Similarly, if you take each sentence and omit a word from
the middle, you now have other pairs of input and
expected output, such as The ___ of England is London and
capital.

These models are quite difficult to use as is, they require you to
prime the response with a suitable prefix. For instance, if you
want to know the capital of England, you might get a response
by prompting the model with The capital of England is, but not
with the more natural What is the capital of England?

Instruction-Tuned LLMs

Researchers have made pretrained LLMs easier to use by
further training (additional training applied on top of the long
and costly training described in the previous section), also
known as fine-tuning them on the following:

Task-specific datasets

These are datasets of pairs of questions/answers manually
assembled by researchers, providing examples of
desirable responses to common questions that end users
might prompt the model with. For example, the dataset
might contain the following pair: Q: What is the capital of

https://oreil.ly/lP6hr

England? A: The capital of England is London. Unlike the
pretraining datasets, these are manually assembled, so
they are by necessity much smaller:

Reinforcement learning from human feedback (RLHF)

Through the use of RLHF methods, those manually
assembled datasets are augmented with user feedback
received on output produced by the model. For example,
user A preferred The capital of England is London to
London is the capital of England as an answer to the
earlier question.

Instruction-tuning has been key to broadening the number of
people who can build applications with LLMs, as they can now
be prompted with instructions, often in the form of questions
such as, What is the capital of England?, as opposed to The
capital of England is.

Dialogue-Tuned LLMs

Models tailored for dialogue or chat purposes are a further
enhancement of instruction-tuned LLMs. Different providers of
LLMs use different techniques, so this is not necessarily true of
all chat models, but usually this is done via the following:

Dialogue datasets

https://oreil.ly/lrlAK
https://oreil.ly/1DxW6

