Machine Learning Python

Principles and Practical Techniques

Parteek Bhatia

Machine Learning with Python

Machine learning (ML) has become a dominant problem-solving technique in the modern world, with applications ranging from search engines and social media to self-driving cars and artificial intelligence (AI). This lucid textbook is an effort to present the contents in a simplified and practical manner without losing the details of the subject.

The book presents the theoretical foundations of ML algorithms, and then illustrates each concept with its detailed implementation in Python to allow beginners to effectively implement the principles in real-world applications. All major techniques, such as regression, classification, clustering, deep learning, and association mining, have been illustrated using step-by-step coding instructions to help inculcate a "learning by doing" approach. The book has no prerequisites, and covers the subject from the ground up, including a detailed introductory chapter on the Python language. As such, it is going to be a valuable resource not only for students of computer science, but also for anyone looking for a foundation in the subject, as well as professionals looking for a ready reckoner.

Parteek Bhatia is an Associate Professor in the School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA, USA. He was previously a Professor in the Department of Computer Science and Engineering at Thapar Institute of Engineering and Technology, Patiala, India, and has also served as a Visiting Professor at Whitman College, Walla Walla, WA, USA, and at the LAMBDA Lab, Tel Aviv University, Israel. His research interests include machine learning, natural language processing, and explainable AI. He has authored several textbooks in the field of databases, including "Data Mining and Data Warehousing: Principles and Practical Techniques," published by Cambridge University Press in 2019.

Machine Learning with Python

Principles and Practical Techniques

Parteek Bhatia

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009170246

© Parteek Bhatia 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-009-17024-6 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To all my students from Thapar Institute of Engineering and Technology, Patiala; DAV College, Amritsar, India; Tel Aviv University, Israel; and Whitman College, Walla Walla, USA, as well as those I have had the privilege to interact with during workshops worldwide, you are the pillars of my life. Life without your presence and contributions would be unimaginably different.

Special thanks to my team led by Mr Aditya Ghodgaonkar, Ms Hemalatha Alapati, Mr Sukhwinder Singh, and Ms Saloni Saxena. Their invaluable contributions in refining the content, creating impactful images, and rigorously testing the code were instrumental in the development of this book.

Contents

List of Figures		xxiii	
List of T	Гables		xlvii
Forewo	<i>rd</i> by Ira	d Ben-Gal	liii
Forewo	<i>rd</i> by Ra	vi Shankar	lv
Preface			lvii
Acknow	ledgmen	its	lix
1. Ove	erview o	of Machine Learning	1
1.1	Introd	luction	1
1.2	Applic	cations of Machine Learning	2
1.3	Histor	ry of Machine Learning	7
	1.3.1	Foundational Phase of Machine Learning (Before 1940)	8
	1.3.2	Transitional Phase of Machine Learning (1940–2000)	9
	1.3.3	Contemporary Phase of Machine Learning (Post 2000)	10
1.4	Defini	ition of Machine Learning	11
1.5	Tradit	tional Programming vs. Machine Learning	13
1.6	Classi	fication of Machine Learning Algorithms	15
	1.6.1	Supervised Learning	16
	1.6.2	Unsupervised Learning	23
1.7	Super	vised and Unsupervised Learning in a Real-life Scenario	26
1.8	Reinfo	orcement Learning	27
	1.8.1	Working Principle of Reinforcement Learning	28
	1.8.2	Components of Reinforcement Learning	29
	1.8.3	Reward Maximization and Discount	31

	184 Exploration and Exploitation	37
	1.8.5 Timing of Execution of Various Steps	32
	1.8.6 Markov's Decision Process	34
	1.8.7 Understanding O-Learning	31
19	Data Science vs. Data Mining vs. Machine Learning vs. Deen Learning vs.	55
1.7	Artificial Intelligence	44
REM	IIND ME	48
ADD	DITIONAL RESOURCES	49
	BOOKS	49
	WEBLINKS TO VIDEOS	50
	WEBLINKS TO BLOGS	50
TEST	t me (questions)	51
2. Intr	oduction to Python	53
2.1	Features of Python	54
2.2	History of Python	55
2.3	Installation of Python	56
2.4	My First Python Program	57
	2.4.1 Interactive Mode Programming	58
	2.4.2 Script Mode Programming	59
	2.4.3 Running Python Script through IDE	60
2.5	Identifiers in Python	63
2.6	Keywords in Python	63
2.7	Indentation in Python	64
2.8	Comments in Python	65
2.9	Variables in Python	65
	2.9.1 Declaring Variables and Assignment of Values to the Variables	66
2.10) Data Types in Python	67
2.11	l Python Numbers	68
2.12	2 Python Strings	69
2.13	3 Python List	73
	2.13.1 Main Features of the List Data Type	74
	2.13.2 Basic Operations on List in Python	74
2.14	4 Python Tuples	81
	2.14.1 Features of Tuples	82
	2.14.2 Operations over the Tuple Data Type	83
	2.14.3 Comparison between Lists and Tuples	87

2.1	15 Python Dictionary	88
	2.15.1 Operations over the Dictionary Data Type	89
2.1	16 Python Set	96
	2.16.1 Operations over the Set Data Type	96
2.1	17 Comparison between List, Tuple, Dictionary, and Set Data Types	101
2.1	18 If Statement	102
2.1	19 Looping Statements	105
	2.19.1 While Loop	105
	2.19.2 For Loop	107
2.2	20 Python Functions	110
RE	MIND ME	115
AD	DITIONAL RESOURCES	116
	BOOKS	116
	WEBLINKS TO VIDEOS	116
	WEBLINKS TO BLOGS	118
TE	ST ME (QUESTIONS)	118
3. Da	ata Pre-processing	125
3.1	I Need for Data Pre-processing	125
3.2	2 Data Pre-processing Techniques	129
	3.2.1 Data Cleaning	130
	3.2.2 Data Integration	137
	3.2.3 Data Transformation	138
	3.2.4 Data Reduction	142
3.3	3 Handling of Categorical Data	148
RE	MIND ME	151
AD	DITIONAL RESOURCES	152
	BOOKS	152
	WEBLINKS TO BLOGS	152
TE	ST ME (QUESTIONS)	153
4. Im	plementing Data Pre-processing in Python	155
4.]	I Step 1: Importing Libraries	156
4.2	2 Step 2: Loading the Dataset	159
4.3	3 Step 3: Handling of Missing Values	166
4.4	4 Step 4: Handling of Categorical Data	168
	4.4.1 One-hot Encoding	170

	4.5	Step 5:	Splitting of Dataset into Training and Testing	175
	4.6	Step 6:	Feature Scaling	177
		4.6.1	Normalization	179
		4.6.2	Standardization	181
	REMI	ND ME		182
	ADDI	TIONAL	RESOURCES	183
		WEBLI	NKS TO VIDEOS	183
		WEBLI	NKS TO BLOGS	183
	TEST	ме (qu	estions)	184
	TEST	ME (PR	actical skills)	186
5.	Simp	ole Line	ear Regression	187
	5.1	Introdu	uction to Simple Linear Regression	187
	5.2	Hypot	hesis or Function	194
	5.3	Parame	eters of Simple Linear Regression	195
	5.4	Cost F	unction and Its Minimization	198
		5.4.1	Minimization of Cost Function with One Parameter: $\min_{\phi} J(\phi)$	199
		5.4.2	Minimization of the Cost Function with Both Parameters	203
	5.5	Gradie	nt Descent Algorithm	208
	5.6	Mathe	matical Understanding of Gradient Descent Algorithm	213
		5.6.1	Role of Learning Rate α	224
		5.6.2	Calculating the Values of Parameters by Gradient Descent Algorithm	229
	REMI	ND ME		235
	ADDI	TIONAL	RESOURCES	236
		WEBLI	NKS TO VIDEOS	236
		WEBLI	NKS TO BLOGS	238
	TEST	ме (qu	estions)	238
6.	Impl	ementi	ng Simple Linear Regression	241
	6.1	Step 1:	Loading Dataset	243
	6.2	Step 2:	Splitting the Dataset into Training and Testing Datasets	246
	6.3	Step 3:	Building the Model and Making Predictions	249
	6.4	Step 4:	Visualizing the Training Set Results	251
	6.5	Step 5:	Visualizing the Testing Set Results	255
	6.6	Step 6:	Evaluating the Model Using Regression Metrics	257
	REMI	ND ME		264
	ADDI	TIONAL	RESOURCES	264
		WEBLI	NKS TO VIDEOS	264

		WEBLII	NKS TO BLOGS	265
	TEST	ME (PR	ACTICAL SKILLS)	265
7.	Mult	iple Liı	near Regression and Polynomial Linear Regression	267
	7.1	Introdu	action to Multiple Linear Regression	267
	7.2	Handli	ng of Nominal Variable and Concept of Dummy Variables	270
	7.3	Buildin	g the Multiple Regression Model	275
	7.4	Conce	pt and Need of P-value	278
	7.5	Calcula	ating P-value	280
	7.6	Using I Regres	P-value and Defining Null Hypothesis for Building Multiple Linear sion Model	292
	7.7	Variabl	e Selection Methods	293
		7.7.1	All-in (Knowledge-based Method)	293
		7.7.2	Backward Elimination Method	293
		7.7.3	Forward Selection Method	295
		7.7.4	Bi-directional Elimination	296
		7.7.5	All Possible Models	297
		7.7.6	Choosing the Most Preferred Variable Selection Method	297
	7.8	Import	ance of Adjusted R-squared Metric in Multiple Linear Regression	298
	7.9	Polyno	mial Linear Regression	299
		7.9.1	Case Study of Rank–Salary	301
		7.9.2	Case Study of Chemistry Students	306
		7.9.3	Polynomial Linear Regression in Case of Multiple Input Attributes	308
		7.9.4	Exploring the Versatility of Polynomial Regression in Modeling Various Data Shapes	308
	REMI	ND ME		310
	ADDI	TIONAL	RESOURCES	311
		WEBLIN	NKS TO VIDEOS	311
		WEBLIN	NKS TO BLOGS	311
	TEST	ме (qu	estions)	311
8.	Impl	ementa	tion of Multiple Linear Regression and Polynomial Linear Regression	313
	8.1	Introdu	action to Multiple Linear Regression	313
		8.1.1	Understanding Dataset and Problem Statement	314
	8.2	Polyno	mial Linear Regression	327
		8.2.1	Case Study of Rank Salary	327
	8.3	What V	Vill Happen if You Increase the Degree Value Too Much?	342
	8.4	Compa	rison of Simple Linear Regression and Polynomial Regression Results	344

	8.5	Case S	tudy of Chemistry Lab Experiment	348
	REMI	ND ME		355
	ADDI	TIONAL	RESOURCES	356
		356		
		WEBLI	NKS TO BLOGS	356
	TEST	ME (PR	ACTICAL SKILLS)	357
9.	Classification			359
	9.1	Introd	uction to Classification	359
	9.2	Types	of Classification	361
		9.2.1	Posteriori Classification	362
		9.2.2	Priori Classification	362
	9.3	Input a	and Output Attributes	362
	9.4	Worki	ng of Classification	363
	9.5	Guidel	lines for Size and Quality of the Training Dataset	367
	9.6	Lazy a	nd Eager Learner Classifiers	367
	9.7	Introd	uction to Decision Tree Classifier	367
		9.7.1	Building Decision Tree	370
		9.7.2	Concept of Information Theory	370
		9.7.3	Defining Information in Terms of Probability	371
		9.7.4	Rule for Selection of Root Node and Other Nodes	373
		9.7.5	Information Gain	374
		9.7.6	Building Decision Tree Using Information Gain	375
		9.7.7	Drawbacks of Information Gain Theory	408
		9.7.8	Split Algorithm Based on Gini Index	408
		9.7.9	Building Decision Tree Using Gini Index	412
		9.7.10	Advantages of Decision Tree	445
		9.7.11	Disadvantages of Decision Tree	445
	9.8	Rando	m Forest Classification	445
	9.9	Naive	Bayes Method	448
		9.9.1	Bayes' Theorem in Action	449
		9.9.2	Using Bayes' Theorem for Classification	451
		9.9.3	Working of Naive Bayes Classifier Using Laplace Estimator	466
	9.10) k-Nearest Neighbor Algorithm		467
9.11 Logistic Regression			ic Regression	470
	9.12	Under	standing Metrics to Know the Quality of Classifier	478
		9.12.1	True Positive	479

	9.12.2 True Negative	479
	9.12.3 False Positive	480
	9.12.4 False Negative	480
	9.12.5 Confusion Matrix	480
	9.12.6 Precision	481
	9.12.7 Recall	482
	9.12.8 F-Measure	483
	9.12.9 Evaluating a Confusion Matrix Have More Than Two Classes	484
REMI	ND ME	486
ADDI	TIONAL RESOURCES	487
	BOOKS	487
	WEBLINKS TO VIDEOS	487
	WEBLINKS TO BLOGS	488
TEST	ME (QUESTIONS)	488
10. Sup	port Vector Machine Classifier	495
10.1	Support Vector Machines	495
	10.1.1 SVM Working Principle	495
10.2	Rules for Identification of Correct Hyperplane	499
10.3	Some Important Concepts and Terminologies Used in SVM	503
	10.3.1 Support Vectors	504
	10.3.2 Maximized Margin	504
	10.3.3 Positive and Negative Hyperplane	505
10.4	Types of SVM Classifiers	506
	10.4.1 Linear SVM Classifier	506
	10.4.2 Non-linear SVM Classifier	507
10.5	Deep Dive into Non-linear SVM Classifier	507
	10.5.1 Case 1: When Non-linear Data Is in One-Dimension	509
	10.5.2 Case 2: When Non-linear Data Is Two-Dimensional	513
10.6	Defining Hyperplane	514
10.7	Limitation of Mapping Data Points to Higher Dimensional Space and Projecting	
	Them Back to Lower Dimensional Space	515
10.8	SVM Kernel	515
	10.8.1 Radial Basis Function (RBF) or Gaussian Kernel Function	516
	10.8.2 Selecting the Appropriate Value of the Hyperparameter (σ)	519
	10.8.3 Understanding RBF Kernel Function from a 3D Perspective	521
	10.8.4 Applying Multiple Kernels to a Dataset	525

10.9 Tuning Parameters of SVM	526
10.9.1 Gamma	526
10.9.2 Regularization	527
REMIND ME	528
ADDITIONAL RESOURCES	530
WEBLINKS TO VIDEOS	530
WEBLINKS TO BLOGS	530
test me (questions)	531
11. Implementation of Classification Algorithms	533
11.1 Introduction to Classification Algorithms and Steps for Its Implementation	533
11.2 Preparing the Pre-processing Data Template (Step 1 to Step 4)—Common to All the Classifier Models	535
11.3 Implementation of Decision Tree Classifier	544
11.4 Implementation of Random Forest Classifier	554
11.5 Implementation of Naive Bayes Classifier	561
11.6 Implementation of k-NN	567
11.7 Implementation of Logistic Regression Classifier	574
11.8 Implementation of Support Vector Machine Linear Model	581
11.9 Implementation of Non-linear Support Vector Machine Model	587
11.10 Comparative Analysis of Different Classifiers	592
11.11 Text Classification	594
REMIND ME	604
ADDITIONAL RESOURCES	606
WEBLINKS TO VIDEOS	606
WEBLINKS TO BLOGS	607
test me (questions)	607
test me (practical skills)	609
12. Clustering	611
12.1 Introduction to Clustering	611
12.2 Applications of Clustering	613
12.3 Features of an Ideal Clustering Algorithm	614
12.4 Distance Metrics	615
12.4.1 Euclidean Distance	615
12.4.2 Manhattan Distance	618
12.4.3 Minkowski Distance	619
12.4.4 Chebyshev Distance	620

	12.5	Major (Clustering Methods/Algorithms	621
	12.6	Partitio	ning Clustering	622
		12.6.1	k-means Clustering	622
		12.6.2	Finding the Optimal Number of Clusters	646
		12.6.3	Issues of k-means Algorithm	647
	12.7	Hierarc	hical Clustering Algorithms (HCA)	648
		12.7.1	Agglomerative Clustering	649
		12.7.2	Divisive Clustering	675
		12.7.3	Density-based Clustering	681
	REMI	ND ME		692
	ADDI	TIONAL	RESOURCES	693
		BOOKS		693
		WEBLII	NKS TO VIDEOS	693
		WEBLII	NKS TO BLOGS	694
	TEST	ме (qu	estions)	695
13	8. Imp	olement	tation of Clustering	699
	13.1	Implen	nentation of k-means Clustering and Hierarchical Clustering	699
	13.2	Case S	tudy I: Clustering the Customers of a Mall	700
		13.2.1	Step 1: Importing Libraries and the Dataset	702
		13.2.2	Step 2: Find the Optimal Number of Clusters	704
		13.2.3	Step 3: Fitting k-means to the Dataset	707
		13.2.4	Step 4: Visualizing the Clusters	709
		13.2.5	Step 5: Creating a Dendrogram and Finding the Optimal Number of Clusters	712
		13.2.6	Step 6: Fitting the Hierarchical Clustering Model over the Dataset	714
		13.2.7	Step 7: Visualizing the Different Clusters	716
	13.3	Case S	tudy II: U.S. Arrests Dataset	719
		13.3.1	Step 1: Importing the Libraries and Dataset	720
		13.3.2	Step 2: Find the Optimal Number of Clusters	721
		13.3.3	Step 3: Fitting k-means to the Dataset	722
		13.3.4	Step 4: Visualizing the Clusters	724
		13.3.5	Step 5: Creating a Dendrogram and Finding the Optimal Number of Clusters	726
		13.3.6	Step 6: Fitting the Hierarchical Clustering Model over the Dataset	727
		13.3.7	Step 7: Visualizing the Different Clusters	728
	13.4	Case St	udy III: Iris Dataset	729
		13.4.1	Step 1: Importing the Libraries and Dataset	730
		13.4.2	Step 2: Find the Optimal Number of Clusters	731

13.4.3 Step 3: Fitting k-means to the Dataset	732
13.4.4 Step 4: Visualizing the Clusters	734
REMIND ME	736
ADDITIONAL RESOURCES	737
WEBLINKS TO VIDEOS	737
WEBLINKS TO BLOGS	737
test me (questions)	737
14. Association Mining	739
14.1 Introduction to Association Rule Mining	739
14.2 Defining Association Rule Mining	743
14.3 Representations of Items for Association Mining	744
14.4 Metrics for Evaluating the Strength of Association Rules	745
14.4.1 Support	745
14.4.2 Confidence	747
14.4.3 Lift	749
14.5 Naive Algorithm for Finding Association Rules	753
14.5.1 Working of Naive Algorithm	753
14.5.2 Limitations of Naive Algorithm	755
14.5.3 Improved Naive Algorithm to Deal with a Larger Dataset	756
14.6 Approaches for Transaction Database Storage	757
14.6.1 Simple Transaction Storage	758
14.6.2 Horizontal Storage	758
14.6.3 Vertical Representation	759
14.7 Apriori Algorithm	760
14.7.1 A Brief Discussion about the Inventors	760
14.7.2 Working of the Apriori Algorithm	762
14.7.3 Apriori Property	781
14.8 Closed and Maximal Itemsets	791
14.9 Limitations of Apriori Algorithm	795
14.10 Apriori–TID Algorithm for Generating Association Mining Rules	795
14.10.1 Advantages of the Apriori–TID Algorithm	799
REMIND ME	800
ADDITIONAL RESOURCES	801
BOOKS	801
WEBLINKS TO VIDEOS	801

WEBLINKS TO BLOGS	802
test me (questions)	802
15. Implementation of Association Mining	807
15.1 Building Association Mining Model	807
15.2. Step 1: Importing Relevant Libraries and Loading the Dataset	810
15.3 Step 2: Making Transactions	812
15.4 Step 3: Building the Model	814
15.5 Step 4: Viewing and Interpreting the Mined Rules	816
REMIND ME	819
ADDITIONAL RESOURCES	819
WEBLINK TO VIDEO	819
WEBLINK TO BLOG	819
test me (questions)	820
16. Artificial Neural Network	821
16.1 Introduction to Artificial Neural Network	821
16.2 Human Brain: An Inspiration for the Development of Neural Network	824
16.2.1 Neuron	825
16.3 Mapping of Human Brain Neurons to Artificial Neural Network	827
16.4 Working of Artificial Neural Network	829
16.5 How Does ANN Processes Multiple Input Values?	831
16.6 Role of Weights in Building ANN	833
16.7 Three-Step Learning Process of a Neuron	835
16.7.1 Commonly Used Activation Functions	837
16.8 Training of Neural Network	842
16.9 Finding Optimized Value of Weights for Minimizing the Cost Function	852
16.9.1 Brute-force Approach	852
16.9.2 Gradient Descent Approach	853
16.9.3 Stochastic Gradient Descent Algorithm to Find Global Minima	856
16.9.4 Mini-batch Method	858
16.10 Final Step-by-Step Procedure for Training the Neural Network	859
REMIND ME	860
ADDITIONAL RESOURCES	861
WEBLINKS TO VIDEOS	861
WEBLINKS TO BLOGS	862
test me (questions)	862

17. Imp	plementation of the ANN	865
17.1	865	
17.2	Importing the Dataset and Pre-processing	866
	17.2.1 Step 1: Importing the Libraries	866
	17.2.2 Step 2: Creating Dependent and Independent Variables	867
	17.2.3 Step 3: Encoding Categorical Data	869
	17.2.4 Step 4: Splitting the Dataset into Training and Testing	870
	17.2.5 Step 5: Feature Scaling	871
17.3	Building the Artificial Neural Network	871
	17.3.1 Step 6: Importing the ANN Libraries	871
	17.3.2 Step 7: Initializing the ANN	872
	17.3.3 Step 8: Adding the Input Layer and the First Hidden Layer	872
	17.3.4 Step 9: Adding Second and Third Hidden Layers	873
	17.3.5 Step 10: Adding the Output Layer	874
	17.3.6 Step 11: Compiling the ANN	875
	17.3.7 Step 12: Fitting the ANN into the Training Set	876
17.4	Predicting the Results	878
	17.4.1 Step 13: Predicting the Test Set Results	878
	17.4.2 Step 14: Making the Confusion Matrix	880
REMI	ND ME	884
ADDI	TIONAL RESOURCES	885
	WEBLINKS TO VIDEOS	885
	WEBLINKS TO BLOGS	885
TEST	me (assignments)	886
18. Dee	ep Learning and Convolutional Neural Network	889
18.1	Image Recognition	889
18.2	Identifying Digits with Machine Learning	892
	18.2.1 Converting Image to Numbers	893
	18.2.2 Issues with This Simple Image Classifier	896
	18.2.3 Possible Solutions	897
18.3	How Does Human Brain Identify Images?	900
18.4	Working Principle of Convolutional Neural Network (CNN)	903
18.5	Architecture of a Basic CNN Model	905
	18.5.1 Convolution Layer	906
	18.5.2 Pooling Layer	915
	18.5.3 Flattening	920

		18.5.4 Full Connection	922
	18.6	Training a CNN Model	923
	18.7	Deciding the Optimal Number of Epochs to Train a Neural Network	925
	REMI	ND ME	930
	ADDI	TIONAL RESOURCES	931
		WEBLINKS TO VIDEOS	931
		WEBLINKS TO BLOGS	931
	TEST	ME (QUESTIONS)	932
19). Imp	lementation of Convolutional Neural Network	937
	19.1	Building Image Classifier with CNN	937
	19.2	Dog–Cat Classifier	938
		19.2.1 Step1: Importing the keras Library and Packages	940
		19.2.2 Step 2: Initializing the CNN Model	940
		19.2.3 Step 3: Add Convolution Layer	941
		19.2.4 Step 4: Pooling	943
		19.2.5 Step 5: Flattening	944
		19.2.6 Step 6: Full Connection	945
		19.2.7 Step 7: Compilation of CNN	946
	19.3	Phase 2: Image Augmentation and Fitting the Model	947
	19.4	Phase 3: Getting Predictions from Our Model and Model Improvement	952
	19.5	Further Improving the Accuracy of the Model by Adding Another Convolutional	
		and Max Pooling Layer	954
	19.6	Case Study 2: Handwritten Digit Classifier Using MNIST Dataset	958
	REMI	ND ME	965
	ADDI	TIONAL RESOURCES	966
		WEBLINKS TO VIDEOS	966
		WEBLINKS TO BLOGS AND DATASETS	967
	TEST	ME (PRACTICAL SKILLS)	967
20). Rec	urrent Neural Network	969
	20.1	Neural Networks and Human Brain	969
	20.2	Extending Artificial Neural Network to Recurrent Neural Network	972
	20.3	Limitations of Feed-forward Networks	975
	20.4	Working Principle of Recurrent Neural Networks	976
	20.5	Understanding the Recurrent Neural Networks by Using a Case Study of	~
	a a í	a Coaching Center	977
	20.6	Mathematical Modeling of KNN	980

20.7	Limitations of Recurrent Neural Networks	983
	20.7.1 Vanishing and Exploding Gradients	985
20.8	Long Short-Term Memory (LSTM)	989
20.9	Working Principle of LSTM	991
	20.9.1 Internals of an RNN Cell	991
	20.9.2 Internals of an LSTM Cell	995
20.1	0 Applications of RNN and LSTM	1001
REM	IND ME	1003
ADD	ITIONAL RESOURCES	1004
	WEBLINKS TO VIDEOS	1004
	WEBLINKS TO BLOGS	1005
TEST	T ME (QUESTIONS)	1005
21. Imj	plementation of Recurrent Neural Network	1007
21.1	Introduction	1007
21.2	Implementation of RNN in Python	1008
	21.2.1 Data Pre-processing	1008
	21.2.2 Building Architecture of RNN	1022
	21.2.3 Making Predictions and Visualizing Results	1029
REM	IND ME	1038
ADD	ITIONAL RESOURCES	1039
	WEBLINKS TO VIDEOS	1039
	WEBLINKS TO BLOGS	1040
TEST	T ME (PRACTICAL SKILLS)	1040
22. Ge	netic Algorithm	1041
22.1	Intuition of Genetic Algorithm	1041
22.2	The Inspiration behind Genetic Algorithm	1042
	22.2.1 Natural Selection: Survival of the Fittest	1043
	22.2.2 Recombination: Crossover	1044
	22.2.3 Mutation: Changes in Genes	1046
22.3	Correlation between Nature and Genetic Algorithm	1049
22.4	Mathematical Representation of Genes and Fitness Theory	1050
22.5	Natural Selection Implementation through Roulette Wheel	1054
	22.5.1 Working of Roulette Wheel Used in the Casino Game	1054
22.6	Implementation of Recombining or Crossover in Genetic Algorithm	1064
	22.6.1 Single-point Crossover	1065
	22.6.2 Double-point Crossover	1068

22.7	Implen	nentation of Mutation in Genetic Algorithm	1072
	22.7.1	Mathematical Modeling of Mutation	1072
	22.7.2	How to Decide the Number of Genes to Be Mutated?	1074
22.8	Elitism		1075
	22.8.1	Implementation of Elitism and Concept of Elitism Ratio	1077
22.9	Advant	ages and Disadvantages of Genetic Algorithm	1079
22.10 Applications of Genetic Algorithm			1080
REMI	ND ME		1080
ADDI	TIONAL	RESOURCES	1081
	WEBLII	NKS TO VIDEOS	1081
	WEBLII	NKS TO BLOGS	1082
TEST	ме (qu	estions)	1082
Index			1085

Figures

1.1	Applications of machine learning	2
1.2	Machine learning powered dynamic pricing	4
1.3	Applications of machine learning in healthcare	6
1.4	Phases of development in machine learning	8
1.5	A traditional programming model	14
1.6	A machine learning model	14
1.7	Types of machine learning	15
1.8	Price prediction dataset	16
1.9	Simplified version of price prediction dataset	17
1.10	Prediction of cost of the plot with a small dataset	17
1.11	Prediction of cost of the plot with a large dataset	18
1.12	Dataset of tumor and patient with its corresponding label	19
1.13	Simplified version of a dataset of tumor and patient with its corresponding label	19
1.14	Data plot for tumor size and malignant	20
1.15	Prediction of a tumor size A	20
1.16	Considering tumor size and age as features for classification	21
1.17	Prediction for the tumor size B	21
1.18	Prediction for tumor size B to benign	22
1.19	Working of unsupervised learning	23
1.20	Applications of unsupervised learning	24
1.21	Google News, an application of clustering	25
1.22	Learning of Adam and Eve vs. modern-day child	27
1.23	Comparison of supervised, unsupervised, and reinforcement learning	28
1.24	Sparrow, grain, and cat in the setting of reinforcement learning	32

1.25	SAR triples	33
1.26	Markov's decision process to find the shortest path	34
1.27	Representation of a house	35
1.28	Representation house in the form of a graph with reward points	36
1.29	Reward matrix (R)	36
1.30	Graph for calculation of $Q(1, 5)$	38
1.31	Graph for calculation of $Q(2, 3)$	40
1.32	Graph for calculation of $Q(3, 1)$	41
1.33	Graph for calculation of $Q(1, 5)$	42
1.34	Domains of all fields	44
1.35	Traditional machine learning vs. deep learning	45
1.36	Artificial intelligence is a superset of machine learning	46
1.37	Types of artificial intelligence	46
1.38	Relationship between artificial intelligence, machine learning, and deep learning	47
2.1	Ranking of computer programming languages	54
2.2	Features of Python	55
2.3	History of Python	56
2.4	Installation of Python	57
2.5	Saving the <i>hello.py</i>	59
2.6	Spyder in Anaconda Navigator	60
2.7	Spyder IDE	61
2.8	Jupyter in Anaconda Navigator	61
2.9	Homepage of Jupyter Notebook	62
2.10	Jupyter IDE	62
2.11	List of keywords in Python	64
2.12	Data types in Python	67
2.13	Dictionary as a <i>key:value</i> pair	88
3.1	Idea dataset for house price prediction	126
3.2	Messy data collected for house price prediction	126
3.3	Precision agriculture data with a lot of missing values and noise	127
3.4	Garbage data input to ML models results in garbage output	128
3.5	Data pre-processing to process the raw data into quality data for training ML models	128
3.6	Various stages of pre-processing	129
3.7	Use of mean or median over numeric data	131
3.8	Clustering of data to identify the outliers and noise	136
3.9	Regression for identification of noise	137

3.10	Effect of an outlier on normalization	140
3.11	Customer dataset	141
3.12	Dropping columns for feature selection	141
3.13	Feature selection vs. feature extraction	143
3.14	Matrix and its eigenvector and eigenvalue	145
3.15	Concept of principal components	147
3.16	Labeling of the categorical variable	148
3.17	Label-encoded data	149
3.18	Creating three separate attributes for each of the nominal value	149
3.19	Concept of dummy variables	150
3.20	Processed data	151
4.1	File Explorer in Spyder	159
4.2	Save and run file options in Spyder	160
4.3	Importing the dataset	161
4.4	Content of <i>dataset</i> data frame	162
4.5	Various ways to perform row and column selection	162
4.6	Content of X and Y matrices	165
4.7	(a) Missing values of X replaced with corresponding columns' mean	168
4.7	(b) Mean values of City and Age columns calculated in Excel	168
4.8	Output of code snippet 4	169
4.9	Encoded City column of matrix X	170
4.10	Results of OneHotEncoding on console	171
4.11	Results of OneHotEncoding	172
4.12	Encoded Purchase column	174
4.13	X_train, X_test, Y_train, and Y_test dataset after the split	177
4.14	Euclidean distance	178
4.15	Results of normalization: (a) original X_train, (b) normalized X_train	180
4.16	Effect of an outlier on normalization	180
4.17	X_train and X_test after scaling	182
5.1	Research experience versus stipend plot	189
5.2	Stipend versus research experience plot based on dataset in Table 5.1	189
5.3	Equation of the straight line	190
5.4	Stipend value at research experience of 0 year	191
5.5	Plot for finding an increase in stipend	191
5.6	Fitting a straight line to model	192
5.7	Estimating stipend for five years of research experience	192

5.8	Mathematical equation of simple linear regression	193
5.9	Role of hypothesis in supervised learning	194
5.10	(a) ϕ_0 is 1.5 and ϕ_1 is 0	195
5.10	(b) ϕ_0 is 0 and ϕ_1 is 0.5	195
5.10	(c) ϕ_0 is 1 and ϕ_1 is 0.5	196
5.11	Error between predicted and actual values	197
5.12	Scattering of data points for dataset	199
5.13	Tracing cost function for different values of the parameter	202
5.14	A 3D graph of cost function $J(\phi_0, \phi_1)$ versus ϕ_0 and ϕ_1	203
5.15	Contour plot of cost function and its parameters	204
5.16	Points on the same color ring have the same cost	205
5.17	Hypothesis plot for the cost function given in Figure 5.16	205
5.18	Minimum value of cost function dependent on two parameters	206
5.19	Gradient descent's basic idea	209
5.20	3D plot of the cost function for which minimization has to be done	209
5.21	Initialization of parameters at point A	210
5.22	Cost function after taking a tiny step	210
5.23	Starting from A and moving toward a lower altitude	211
5.24	Starting from A and moving toward a lower altitude	211
5.25	Reaching minima from initial point A	211
5.26	Moving downhill from initial point B	212
5.27	Different local minima for the same plot	212
5.28	Cost function for simple linear regression	213
5.29	Plot of a cost function with one parameter	213
5.30	Initial point for gradient descent (Case 1)	214
5.31	The given line whose slope is to be found	214
5.32	Drawing a triangle out of the given line	215
5.33	(a) When the slope of the line is larger	215
5.33	(b) When the slope of the line is smaller	215
5.34	Computing the slope of line <i>AB</i>	216
5.35	Positive slope of the line	217
5.36	Negative slope of a line	218
5.37	Zero slope of a line	218
5.38	Various cases of the slope of a line	219
5.39	Slope of a curve given by $f(x)$ at point T	219
5.40	Points T and T' on the curve $y = f(x)$	219

5.41	Construction of line TT' on the curve $y = f(x)$	220
5.42	Finding the slope of a curve	221
5.43	Slope of curve at an initial point in Case 1	222
5.44	Converging to the point of minima	222
5.45	Chosen initial point for gradient descent (Case 2)	223
5.46	Slope of curve at an initial point in Case 2	223
5.47	Converging to the point of minima	224
5.48	When the learning rate is low	224
5.49	When the learning rate is large	225
5.50	When the learning rate is too large	225
5.51	Initialization at point A with a very large value of learning rate $lpha$	226
5.52	A large step size from point A to point B	226
5.53	A large step size from point B to point C	226
5.54	A large step size from point C to point D	227
5.55	Reducing the step size when approaching the point of minima	227
5.56	Initialization at point A	228
5.57	Step from point B to point C	228
5.58	Step from point C to point D	229
5.59	Notations used in gradient descent algorithm	230
5.60	The cost function for the linear regression model	235
6.1	Problem representation	242
6.2	Best-fitting line for Stipend versus ResearchExperience plot	242
6.3	File explorer in Spyder	243
6.4	(a) Variable explorer in Spyder	244
6.4	(b) Contents of dataframe <i>dataset</i>	245
6.5	Snapshot of variable explorer	248
6.6	Values of X_train, X_test, y_train, and y_test	248
6.7	Snapshot of variable explorer	250
6.8	Values of <i>y_pred</i> and <i>y_test</i>	251
6.9	Scatter plot for a given dataset	252
6.10	Scatter plot for a given dataset with labels	253
6.11	The resulting regression line	254
6.12	Regression line for the scatter plot of the training dataset	254
6.13	Regression line for the scatter plot of the testing dataset	256
6.14	Regression line for the scatter plot on the execution of code snippet 13	257
6.15	The value of MAE	258

6.16	The value of MSE	259
6.17	The value of RMSE	259
6.18	Simple Linear Regression Line	261
6.19	Mean (average) Line	262
7.1	Simple and multiple linear regression mathematical realization	268
7.2	Handling nominal attributes	271
7.3	Creating two separate attributes for each of the nominal values	271
7.4	Dummy variables	271
7.5	Replacing nominal attribute with a dummy variable	272
7.6	Mathematical representation of multiple linear regression for a given dataset	272
7.7	Nominal attribute with three values	273
7.8	Replacing nominal attribute with dummy variables	273
7.9	Mathematical representation for multiple linear regression with two dummy variables	274
7.10	Dataset with more than one categorical attribute—State and Company Type	274
7.11	Handling the models with two or more categorical attributes	275
7.12	(a) Multiple regression model, dependent variable y is dependent on more than one variable, and in (b) multiple regression model for predicting the final grades of students	276
712	by selecting all the attributes	270
7.15	Selection of attributes on which y is dependent	277
7.14	Garbage in-garbage out	277
7.15	1 oo complex model	277
7.10	Selection of relevant attributes on which final grades of students depend	2/8
7.10	Expected results of the experiment	281
7.18	Observed results of the experiment	281
7.19		284
7.20	Finding P-value with chi-square distribution table	284
7.21	Finding P-value with chi-square value 3	285
7.22	Finding P-value with chi-square value of 0.75	287
7.23	Finding P-value with chi-square value 0.12	288
7.24	Finding P-value with chi-square value 12	290
7.25	Finding P-value with chi-square value 27	291
7.26	Backward elimination method	294
7.27	Forward selection method	295
7.28	Bi-directional elimination	296
7.29	Polynomial behavior of COVID confirmed cases	300
7.30	Plot of salary versus rank	302

7.31	Modeling the rank–salary problem using polynomial linear regression	302
7.32	Modeling the rank–salary problem using linear regression	303
7.33	Resulting polygon when the degree is 2	304
7.34	Resulting polygon when the degree is 3	304
7.35	Resulting polygon when the degree is 4	305
7.36	Predicting the salary of a person working at rank 7.5	305
7.37	Temperature versus pressure plot for case study	306
7.38	Linear regression when applied to chemistry students' problem	307
7.39	Resulting polynomial trend when scatter points are joined	307
7.40	Complex curve shapes	309
8.1	Data analysis of the 50_AdAgency dataset	315
8.2	Importing the 50_AdAgency.csv dataset to the current working directory of Spyder	316
8.3	Variable explorer tab after executing code snippets 1 to 4	317
8.4	(a) Data frame <i>dataset</i>	317
8.4	(b) Values loaded into X	317
8.4	(c) Values loaded into Y	318
8.5	Creating three separate attributes for each of the nominal values	318
8.6	Independent variable X after onehot encoding over the City attribute	320
8.7	Explanation of dummy variables	320
8.8	Updated <i>X</i> - after freeing it from <i>dummy trap</i>	321
8.9	<i>X_train, X_test, Y_train, Y_test</i> in the variable explorer tab	322
8.10	Output message on building the model successfully	323
8.11	<i>Y_pred</i> in variable explorer tab	324
8.12	Actual and predicted Profit values	325
8.13	Results of the model evaluation	326
8.14	Importing the dataset	329
8.15	Data frame dataset as shown by variable explorer	329
8.16	Contents of the <i>dataset</i> data frame	330
8.17	Independent Rank and dependent Salary variable	331
8.18	Two-step process of fitting a polynomial regression model	331
8.19	Contents of X_poly	332
8.20	Scatter plot for a given dataset	334
8.21	Scatter plot for a given dataset with labels	334
8.22	The resulting regression line	335
8.23	Regression line for the scatter plot of the training dataset	336
8.24	Performance evaluation at degree 2	337

8.25	Regression plot for 3-degree polynomial	338
8.26	Performance evaluation at degree 3	339
8.27	Regression plot for 4-degree polynomial	340
8.28	(a) Performance evaluation at degree 4	341
8.28	(b) Performance evaluation at degrees 2, 3, and 4	341
8.29	Predicting <i>Rahat's</i> salary, an employee at level 7.5	342
8.30	Regression plot for 50-degree polynomial	342
8.31	X_poly up to degree 50	343
8.32	Comparison of regression plot for 50-degree and 100-degree	343
8.33	Visualizing the results of linear regression	345
8.34	Performance evaluation for simple linear regression	346
8.35	Predicting salary using simple linear regression	347
8.36	The content of the <i>dataset</i>	349
8.37	Contents of X and Y	349
8.38	X_poly when the degree is 2	350
8.39	The resulting regression line fitting the data points	351
8.40	Performance evaluation at degree 2	352
8.41	X_poly when the degree is 3	353
8.42	The resulting regression line for a degree of 3	353
8.43	Performance evaluation at degree 3	353
8.44	Predictions made by polynomial regression	354
8.45	Results of linear regression	355
9.1	Input and output attributes of glass identification dataset	363
9.2	Process of learning in the case of a decision tree classifier	364
9.3	Building classifier to predict the chance of placements	365
9.4	Predicting the chance of placement for a student based on the input attributes	366
9.5	Training and testing of the classifier	366
9.6	Structure of a decision tree	368
9.7	Decision tree to predict whether the customer will buy the phone or not	368
9.8	Decision tree to predict the species of an animal	369
9.9	Data splitting based on Age attribute	379
9.10	Decision tree after splitting of attribute Age being "Old"	379
9.11	Decision tree after splitting of attribute Age being "New"	380
9.12	Decision tree after splitting based on attribute "Competition"	382
9.13	Data split based on Student attribute as the root node	387
9.14	Data split based on Age attribute	391

9.15	Decision tree after splitting of attribute Age "<= 30"	392
9.16	Decision tree after selecting Income as best split when Age is "31–40"	393
9.17	Decision tree after splitting of attribute Income	394
9.18	Decision tree after splitting of attribute Age "> 40"	395
9.19	Data split based on Age attribute when the customer is not a student	399
9.20	Decision tree after selecting Income as best split when the customer is not a student and Age <= 30	400
9.21	Decision tree after splitting of attribute Income when the customer is not a student and Age <= 30	402
9.22	Decision tree after selecting Credit rating as the next split	403
9.23	Decision tree after splitting of attribute Credit rating when the customer is non-student and age is 31–40	404
9.24	Decision tree after selecting Credit rating as the next split	406
9.25	Decision tree after splitting Credit rating attribute	407
9.26	Prediction of buying a computer for an unknown instance	408
9.27	Gini index representing perfect equality	409
9.28	Lorenz curve	410
9.29	Lorentz curves with varying income distributions	411
9.30	Data splitting based on Age attribute	416
9.31	Decision tree after splitting of attribute Age being "Old"	417
9.32	Decision tree after splitting of attribute Age being "New"	417
9.33	Decision tree after splitting based on attribute "Competition"	419
9.34	Data split based on Student attribute as the root node	424
9.35	Data split based on Age attribute	428
9.36	Decision tree after splitting of attribute Age "<= 30"	429
9.37	Decision tree after selecting Income as the next split	430
9.38	Decision tree after splitting of attribute Age "31–40"	431
9.39	Decision tree after splitting of attribute Age "> 40"	432
9.40	Data split based on Age attribute when the customer is not a student	436
9.41	Decision tree after selecting Income as best split when Age <= 30 and customer is not a student	438
9.42	Decision tree after splitting of attribute Income when Age <= 30 and customer is not a student	439
9.43	Decision tree after selecting Credit rating as the next split	441
9.44	Decision tree after splitting of attribute Credit rating when Age is 31–40, the customer is not a student	442
9.45	Decision tree after analysis of Age attribute	443

9.46	Prediction of buying a computer for an unknown instance	444
9.47	The working of the random forest algorithm	447
9.48	Kinect, a gaming device using random forest for the classification of body parts of a gamer	447
9.49	Manufactured screws	449
9.50	Graph depicting information of employees whether they are commuting on two-wheeler or four-wheeler based on their Salary and Age	452
9.51	New data point indicating unknown instance	452
9.52	Area of likelihood around unknown instance X	454
9.53	Calculation of probability of likelihood	455
9.54	Calculation of probability of likelihood for four-wheeler	457
9.55	Summarization of count calculations of all input attributes	463
9.56	Probability of play held or not for each value of the attribute	464
9.57	Probability for play yes for an unknown instance	464
9.58	Probability for a play taking a class no for an unknown instance	465
9.59	Probability of play not being performed when the outlook is "overcast"	466
9.60	Values of attributes after adding Laplace estimator	466
9.61	Probability of play held or not for each modified value of the attribute	467
9.62	Attribute values for given example instance	467
9.63	Sample plot of our classification problem	468
9.64	The new data point whose category needs to be predicted	468
9.65	Five closest neighbors of X (new data point)	469
9.66	Category-wise neighbor count	470
9.67	Customers' age and response (whether they bought insurance or not?)	471
9.68	Linear regression model of researchers' stipend and respective experience	471
9.69	Modeling the buying insurance problem using linear regression	472
9.70	Likelihood of customers buying insurance for a given age	472
9.71	Studying the relevant part of the linear regression model	473
9.72	Studying the non-relevant part of the linear regression model	473
9.73	Modified plot modeling the buying insurance problem	474
9.74	Effect of Sigmoid function on linear regression model	474
9.75	Plot for Equation (9.6) in XY plane	475
9.76	Predicting the chances of buying insurance	476
9.77	Computing probabilities of buying insurance	477
9.78	Mapping probability values to binary outcome (0 or 1)	477
9.79	Building binary classifier using a logistic regression model	478
9.80	Confusion matrix for bird classifier	479

9.81	Confusion matrix for tumor prediction	480
10.1	Distribution of dataset of apples and peaches based on their size and color	496
10.2	Standard apples and peaches at the heart of the dataset	496
10.3	Apples that appear like peaches are chosen by SVM during training	497
10.4	Peaches that appear like apples are chosen by SVM during training	498
10.5	Hyperplane separating the two classes—apples and peaches	498
10.6	One of the possible hyperplanes (separating lines)	499
10.7	Some other possible hyperplanes (separating lines)	499
10.8	Taking three sample hyperplanes, A, B, and C	500
10.9	Selection of B as best hyperplane based on Rule 2	501
10.10	Choosing the hyperplane with maximum margin	501
10.11	Spotting an outlier	502
10.12	Resulting hyperplane in the presence of an outlier	502
10.13	Given hyperplane for a scatter plot	503
10.14	Some important terminologies related to SVM	503
10.15	Maximized margin	504
10.16	Locating positive and negative hyperplane in different cases	505
10.17	Understanding positive, negative, and optimal hyperplanes	505
10.18	Linearly separable data with linear SVM classifier	506
10.19	Non-linearly separable data	507
10.20	Non-linear data separated with different possibilities of linear hyperplane	508
10.21	Non-linearly separable dataset	509
10.22	Sample data points in 1D	509
10.23	Assuming A as the instance of hyperplane	510
10.24	Assuming A' as the instance of hyperplane	510
10.25	Non-linear dataset with 9 different items	510
10.26	Resulting plot on applying function <i>f</i> over data points	511
10.27	Change after applying the <i>f</i> function	511
10.28	Identifying a hyperplane after the transformation of data points	512
10.29	Hyperplane segregating the data points into two classes	512
10.30	A non-linearly separable dataset in 2D space	513
10.31	Mapping data points from 2D data space to the 3D data space	513
10.32	Mapping back the data points from the 3D data space to the 2D data space	514
10.33	Distance between two nodes	516
10.34	Relationship between kernel and distance between points (σ = 4)	518
10.35	Choosing the appropriate value of σ	519

10.36	Relationship between kernel and distance (width of the bump from -3 to 3)	520
10.37	Plot of kernel value versus the respective distance when sigma is large (σ = 10)	521
10.38	Gaussian RBF kernel in 3-dimension	522
10.39	Selection of point of the landmark	522
10.40	2D plot of a dataset	523
10.41	Relationship between dataset and the kernel function	523
10.42	Relationship between dataset and the kernel function	524
10.43	Scatter plot of a complex dataset	525
10.44	Using two landmarks $\overline{x_1}$ and $\overline{x_2}$	525
10.45	Decision boundary for the complex dataset	526
10.46	Effects of the low and high value of gamma parameter	527
10.47	Effect of regularization parameter	528
11.1	Alexa_dataset	536
11.2	Importing the libraries	538
11.3	Importing the <i>Alexa_dataset.csv</i> to the current working directory of Spyder	538
11.4	Importing the dataset	539
11.5	Contents of the <i>dataset</i> variable	539
11.6	Variable explorer depicting dataset, <i>X</i> , and <i>y</i>	540
11.7	Contents of X and y	541
11.8	Variable explorer	542
11.9	X_train and X_test after feature scaling	543
11.10	Variable explorer showing <i>y_pred</i>	545
11.11	(a) y_test	546
11.11	(b) y_pred	546
11.12	Confusion matrix for the decision tree classifier	547
11.13	Analyzing the confusion matrix for the decision tree classifier	548
11.14	Resulting performance metrics for our decision tree model	550
11.15	Visualization of the decision tree (training dataset)	553
11.16	Visualization of the decision tree (testing dataset)	554
11.17	Parameters of the Random Forest Classifier	555
11.18	First 10 values of <i>y_test</i> and <i>y_pred</i>	557
11.19	Confusion matrix (<i>cm</i> variable) for random forest	558
11.20	Resulting performance metrics for our random forest model	559
11.21	Visualization of the prediction results (training dataset)	560
11.22	Visualization of the prediction results (testing dataset)	561
11.23	First 20 observations of naive Bayes <i>y_test</i> , <i>y_pred</i>	563

11.24	Confusion matrix (<i>cm</i> variable) for naive Bayes	564
11.25	Resulting performance metrics for our naive Bayes	565
11.26	Visualization of the prediction results (training dataset)	566
11.27	Visualization of the prediction results (testing dataset)	567
11.28	Properties of the k-NN model	569
11.29	Comparing the values of <i>y_test</i> (actual values) with <i>y_pred</i> (predicted values)	570
11.30	Confusion matrix of the <i>k-NN</i> model	571
11.31	Resulting performance metrics for our k-NN classifier	572
11.32	Visualization of the prediction results (training dataset)	573
11.33	Visualization of the prediction results (testing dataset)	574
11.34	Comparing the values of <i>y_test</i> (actual values) with <i>y_pred</i> (predicted values)	577
11.35	Confusion matrix of the logistic regression classifier	577
11.36	Resulting performance metrics for our logistic regression classifier	579
11.37	Visualization of the prediction results (training dataset)	579
11.38	Visualization of the prediction results (testing dataset)	580
11.39	Parameters for the SVM model	582
11.40	Comparing the values of <i>y_test</i> (actual values) with <i>y_pred</i> (predicted values)	583
11.41	Confusion matrix of the SVM model	584
11.42	Resulting performance metrics for our SVM classifier	585
11.43	Visualization of the prediction results (training dataset)	586
11.44	Visualization of the prediction results (testing dataset)	587
11.45	Comparing the values of <i>y_test</i> (actual values) with <i>y_pred</i> (predicted values)	589
11.46	Confusion matrix for the <i>non-linear SVM</i> model	590
11.47	Resulting performance metrics for our non-linear SVM classifier	591
11.48	Visualization of the training results	591
11.49	Visualizing the test set results	592
11.50	X as an array of int64 with size (100, 1500) in variable explorer tab after BoW operation	599
11.51	Contents of X after applying CountVectorizer	599
11.52	X as an array of float 64 with size (100, 3622) in variable explorer tab	601
11.53	Contents of X after applying TF–IDF	601
11.54	Comparing predicted values with actual values	603
12.1	Characteristics of cluster	612
12.2	Clustering model	612
12.3	Euclidean distance between $(6, -2)$ and $(9, 4)$	616
12.4	Manhattan distance	618
12.5	Major clustering methods/algorithms	622

12.6	Flowchart for the k-means algorithm	624
12.7	Database after initialization	625
12.8	Plot of data for $k = 2$	630
12.9	Plot of data for $k = 3$	633
12.10	Plot of data in Example 12.2 for $k = 3$	640
12.11	Use the elbow method to determine the optimal number of clusters	647
12.12	Illustration of agglomerative and divisive clustering	649
12.13	Hierarchical clustering tree diagram for agglomerative clustering	651
12.14	Single linkage	652
12.15	Complete linkage	652
12.16	Average linkage	653
12.17	Graphical representation of given data points	654
12.18	Clustering of data points using single linkage	654
12.19	Clustering of data points using complete linkage	655
12.20	Clustering using complete linkage	658
12.21	Clustering using single linkage	659
12.22	Dendrogram of single-linkage clustering of customer segmentation	663
12.23	Hierarchical tree of single-linkage clustering of customer segmentation	663
12.24	Dendrogram obtained by agglomerative clustering	674
12.25	Hierarchical tree of clustering of students based on their marks in tests	674
12.26	Hierarchical clustering tree diagram for divisive algorithm	675
12.27	Dendrogram of divisive clustering	680
12.28	Hierarchical tree of clustering of students based on their marks in tests	681
12.29	Clustering using k-means	681
12.30	Data points clustered in arbitrary shapes and having noise	682
12.31	Concept of neighborhood and MinPts	683
12.32	Concept of core, border, outlier, MinPts, and ϵ (epsilon)	684
12.33	Representation of types of data points	684
12.34	Concept of directly density-reachability	685
12.35	Concept of density-reachability	686
12.36	Illustration of density-connectivity	687
12.37	Example of density-connectivity	688
12.38	Some more examples of DBSCAN	689
12.39	Advantages of DBSCAN over k-means with some examples	690
12.40	Clusters with unequal densities	691
12.41	Clusters with unequal densities	692

13.1	Dataset of the customers	702
13.2	X NumPy array	703
13.3	Use of the elbow method to determine the optimal number of clusters	704
13.4	Parameters of the KMeans () constructor	705
13.5	<i>Elbow</i> curve to find the number of clusters	706
13.6	Optimal number of clusters in elbow graph	707
13.7	Contents of <i>y_kmeans</i>	708
13.8	Mapping customer information with their cluster number	708
13.9	Details of scatter method	710
13.10	Five distinct clusters with their labels	710
13.11	Five distinct clusters	711
13.12	Five clusters with their respective class labels	712
13.13	Dendrogram for mall customers	713
13.14	Possible boxes for dendrogram of mall customer clustering problem	713
13.15	Total number of vertical lines within the box with a maximum height difference	714
13.16	Contents of y_hc	715
13.17	Interpreting the contents of <i>y_hc</i>	716
13.18	Results of agglomerative clustering	717
13.19	Clusters with their respective centroid	718
13.20	Contents of X	721
13.21	Elbow plot for the U.S. arrests dataset	722
13.22	First and last 10 rows of <i>y_means</i> variable	723
13.23	Mapping data of the U.S. states with their respective cluster number	724
13.24	The U.S. states are clustered into three distinct groups (or clusters)	725
13.25	Labeling clusters of the U.S. states	726
13.26	Dendrogram for the U.S. arrests dataset	727
13.27	Clusters formed by the agglomerative clustering algorithm	728
13.28	Description of <i>dataset</i> dictionary	730
13.29	Contents of X	731
13.30	Elbow graph for the <i>Iris</i> dataset	732
13.31	First and last 10 rows of <i>y_means</i> variable (<i>Iris</i> dataset)	733
13.32	Mapping data of flowers with their respective cluster number	733
13.33	Three clusters of the Iris dataset	734
13.34	Labeled clusters of the Iris dataset	735
14.1	Need for association mining	740
14.2	Association of sale of beer and diapers	741

14.3	Association of sale of beer and diapers	741
14.4	Association of sale of beer and diapers	742
14.5	Association of sale of beer and diapers	742
14.7	Representation of association rules	752
14.8	Process for identifying frequent itemsets	770
14.9	Generation of L1, frequent 1-itemset	776
14.10	Generating association rules from frequent itemsets	777
14.11	Lattice structure	782
14.12	Generation of C2 and L2	784
14.13	Generation of C3 and L3	785
14.14	Lattice structure	786
14.15	Relation between frequent, closed, and maximal itemsets	791
14.16	Lattice structure of itemsets	795
15.1	Snapshot of the dataset	810
15.2	Variable explorer	811
15.3	Contents of the <i>dataset</i> data frame with header	811
15.4	An updated snapshot of the <i>dataset</i> without a header	812
15.5	Preparing the <i>transactions</i> list	813
15.6	Contents of the <i>transactions</i> list	813
15.7	Installing the apriori_python library	814
15.8	Parameters of the Apriori method	814
15.9	The <i>rules</i> in the variable explorer tab	815
15.10	The <i>rules</i> variable contents	816
15.11	Analyzing the rules	818
15.12	Frequent items list	818
15.13	Comprehending the Apriori rules	818
16.1	A history of storage cost	822
16.2	Durability and access time of some storage techniques	823
16.3	Evolution of the processing capacity of computers	823
16.4	Processing of input signals to output action by the human brain	824
16.5	Network of neurons	825
16.6	Microscopic image of a neuron	825
16.7	MRI of a human brain showing billion of neurons	826
16.8	Anatomy of a neuron	826
16.9	Illustration of similarity between (a) biological neuron and (b) artificial neuron	827
16.10	Basic layer structure of ANN	828

16.11	Flow of information in a basic ANN	829
16.12	Deep learning neural network	829
16.13	Multiple output nodes in a case of multi-class classification	830
16.14	Single output node in case of regression or binary class classification	830
16.15	Layer structure of a typical ANN and deep learning neural network	831
16.16	Feature scaling independent variables	832
16.17	Input and output values for the same observation	832
16.18	Concept of weights in neural networks	833
16.19	Adjusting weights in ANN	834
16.20	Synapse is like a tightrope for a stuntman	835
16.21	Computing the weighted sum	835
16.22	Cooking of food is analogous to ANN's working	836
16.23	Application of activation function in Step 2	837
16.24	Placement of activation function in neural networks	837
16.25	A plot of the threshold function	838
16.26	Plot of the sigmoid function	839
16.27	Plot of ReLU	840
16.28	Plot of the hyperbolic tangent function	841
16.29	Passing signal to the next neuron	842
16.30	Basic neural network for predicting the price of real estate	843
16.31	Forward propagation in neural network	844
16.32	Comparing actual value (Y) and predicted value (\hat{Y})	844
16.33	A cycle of forward and backward propagation making an epoch	845
16.34	Feeding input values and calculating predicted value through forwarding propagation	846
16.35	Adjusting weights to minimize cost function through backward propagation	847
16.36	Processing the complete dataset with six neurons working in parallel	848
16.37	Predicting estate prices of multiple flats (six flats)	849
16.38	Topmost neuron of hidden layer linked with two input parameters— <i>Covered Area</i> and <i>Distance from City</i>	850
16.39	Connections of input layer neurons with hidden layer neurons	851
16.40	Plot of a cost function with one parameter	853
16.41	Initial point for gradient descent	854
16.42	Finding the slope of a curve	854
16.43	Converging to the point of minima	855
16.44	Global and local minima of a cost function	855
16.45	Working of batch gradient descent algorithm	856

16.46	Working of stochastic gradient descent algorithm	857
16.47	Path taken by the gradient descent and the stochastic gradient descent to minimize the cost function	858
16.48	Batch sizes in stochastic gradient and gradient descent approach	859
17.1	The cancer dataset	866
17.2	Contents of variable explorer	868
17.3	(a) Snapshot of X (b) Snapshot of y	868
17.4	Encoding categorical data	869
17.5	Variable explorer after the training and testing of the dataset	870
17.6	Softmax activation function for multi-class classification	875
17.7	Fitting the training sets to the neural network	877
17.8	Fitting the training sets to the neural network	877
17.9	Fitting the training sets to the neural network	878
17.10	Predicted probability in the range of 0–1	879
17.11	Predicted probability after conversion to binary	879
17.12	Comparison of <i>y_pred</i> and <i>y_test</i>	880
17.12	Confusion matrix of the ANN classifier	881
17.13	Resulting performance metrics for our decision tree model	883
18.1	A scene in an IT company	890
18.2	Icon of Google Photos app	891
18.3	Google live albums in the Google Photos app	891
18.4	A snapshot from the MNIST dataset	893
18.5	A sample from the MNIST dataset for digit "5"	893
18.6	How computer perceives digit "5"	894
18.7	Converting image of digit "5" to the corresponding picture matrix	894
18.8	The pixel-vector for digit "5"	895
18.9	Using ANN for digit recognition	895
18.10	Digit "5" written in different handwriting	896
18.11	A subset of training data containing other handwritten digits	896
18.12	Variation in ANN results with the change of position of handwritten digits	897
18.13	Deep neural network for training on synthetic data	898
18.14	Sliding window approach	899
18.15	Ambiguous image	900
18.16	Ambiguous image	901
18.17	Optical illusion (Painting by Mexican artist Octavio Ocampo)	901
18.18	Optical illusion	902

18.19	Output of image classifier	903
18.20	A typical image classification task using CNN	903
18.21	How computer perceives an image	904
18.22	Processing of black and white image in a 2D array	904
18.23	Processing of a colored image in a 3D array	905
18.24	A black and white image of digit "5" and its pixel matrix representation	905
18.25	An overview of the CNN model	906
18.26	Input image pixel representation and feature detector or kernel	907
18.27	Dimension guidelines for convolution	907
18.28	Dimensions of feature map when a 7×7 image is convoluted with a 3×3 filter	908
18.29	Resulting feature map	913
18.30	Formation of a convolutional layer	914
18.31	Relevance of ReLU in CNN	915
18.32	Images of dogs with slight variations in them	916
18.33	Max pooling with a window of 2×2 and stride equal to 2	917
18.34	Max pooling with a window of 2×2 and stride equal to 2	918
18.35	Max pooling window of 2×2 providing positional independence of four locations	919
18.36	Max pooling versus average pooling	920
18.37	Convolution followed by pooling	920
18.38	Flattening operation	921
18.39	Feeding flattened feature map to subsequent ANN input layer	921
18.40	Overall architecture of CNN	922
18.41	Connecting the neural nets	922
18.42	Traditional artificial neural network	923
18.43	Full architecture of CNN	923
18.44	Fine-tuning weights and selection of feature descriptors	924
18.45	Example dataset	926
18.46	Model trained as a straight line (underfitted model)	926
18.47	Plot of an underfitting model	927
18.48	Model fitted as zig-zag curve (overfitted model)	927
18.49	Plot of an overfitting model	928
18.50	Right-fitted model as a parabola	928
18.51	Comparison of training and validation data trend concerning model	928
18.52	Training loss vs. validation loss plot based on some model's training	929
19.1	Directory structure of the downloaded dog–cat dataset	938
19.2	Creating training and testing set	939

19.3	Processing of input image	941
19.4	Convolution process	942
19.5	Max pooling with a window of 2×2 and stride equal to 2	943
19.6	Convolution followed by pooling	944
19.7	Flattening	944
19.8	Full CNN model	946
19.9	Code template for image augmentation	947
19.10	Accuracy of our trained CNN model	951
19.11	An unseen image	952
19.12	Input dimension of images fed to CNN	953
19.13	Improved accuracies of the model	956
19.14	Pop-up asking permission to access Google Drive	957
19.15	Directory structure of the <i>dog–cat</i> dataset	957
19.16	Some sample images of digits from the MNIST dataset	958
19.17	Our CNN model's performance	963
19.18	A handwritten sample digit	963
19.19	Uploading unseen image in sample_data folder	964
19.19	Prediction for unseen image	964
20.1	Structure of human brain	970
20.2	Architecture of ANN	972
20.3	Squashing ANN	972
20.4	Representation using a single arrow between layers	973
20.5	Vertical representation of layers	973
20.6	Network with a temporal loop	974
20.7	Network after unrolling the temporal loop	974
20.8	Classification of an image by feed-forward network	975
20.9	Relation between classification at time "t" and time "t+1"	975
20.10	Prediction of next word using feed-forward network	976
20.11	Relation between outputs of RNN	977
20.12	Schedule of classes	978
20.13	Predicting subject using feed-forward network	978
20.14	RNN to consider previous outputs	979
20.15	RNN to consider true and predicted outputs	979
20.16	Predicted vector and new information to find output vector	980
20.17	Mathematical representation of RNN	981
20.18	Processing at time interval $t(0)$	982

20.19	Processing at time interval t(1)	983
20.20	RNN in case of short-term dependencies	984
20.21	RNN in case of long-term dependencies	985
20.22	Backpropagation in RNN	985
20.23	Vanishing gradient	987
20.24	Derivative in case of sigmoid activation function	987
20.25	Exploding gradient	988
20.26	Gated units in LSTM	990
20.27	Online review of laptop	990
20.28	Processing the information one by one	991
20.29	Machine-readable vectors	991
20.30	Hidden state flow between cells	992
20.31	Working inside a cell of an RNN	992
20.32	<i>tanh</i> function regulating input values between –1 and 1	993
20.33	Transformation of a vector in the absence of <i>tanh</i> function	994
20.34	Transformation of a vector with <i>tanh</i> function	994
20.35	LSTM cell	995
20.36	Sigmoid function regulating input values between 0 and 1	997
20.37	Operations of a forget gate	998
20.38	Operations of an input gate	999
20.39	Cell state calculation	1000
20.40	Operations of an output gate	1001
21.1	DelhiDieselPrice dataset	1009
21.2	Importing training data and testing data	1010
21.3	Inserting Stacked Line charts	1010
21.4	Plotting trend of diesel prices in Delhi based on training data	1011
21.5	Plotting trend of diesel prices in Delhi based on testing data	1011
21.6	Contents of <i>dataset_train</i> and <i>training_set</i>	1013
21.7	Contents of <i>training_set_scaled</i> (<i>scaled training_set</i>)	1014
21.8	Different instances of independent variables and their corresponding dependent variables	
	for the training dataset (5299 records)	1016
21.9	Preparing <i>x</i> _ <i>train</i> and <i>y</i> _ <i>train</i> from <i>training_set_scaled</i>	1017
21.10	Contents of <i>x_train</i>	1019
21.11	Contents of <i>y_train</i>	1019
21.12	Identical values in the rows of <i>x_train</i>	1020
21.13	Variable explorer tab after <i>reshaping x_train</i>	1021

21.14	Visualizing <i>x_train</i> on the different axis after reshaping it	1022
21.15	Fitting the RNN model to the training data	1029
21.16	Contents of <i>diesel_price</i> and <i>dataset_test</i>	1029
21.17	Contents of <i>dataset_total</i>	1031
21.18	Preparing the data structure for <i>test data</i>	1032
21.19	Sub-setting <i>datset_total</i> for preparing the required data structure	1032
21.20	Inputs data frame after reshaping and transformation	1033
21.21	Process of making predictions (right from generation of <i>inputs</i> to making predictions)	1035
21.22	Contents of <i>predicted_diesel_price</i> and <i>diesel_price</i>	1036
21.23	Actual diesel prices versus predicted diesel prices in Delhi	1037
21.24	Actual diesel prices versus predicted diesel prices in Delhi (timesteps = 100)	1038
22.1	Evolution of humanity	1042
22.2	Food chain of birds	1043
22.3	Most fit sparrows get a chance to survive long	1044
22.4	Process of recombination or crossover	1044
22.5	Process of recombination or crossover	1045
22.6	Process of recombination or crossover	1045
22.7	Process of recombination or crossover	1046
22.8	Process of mutation	1047
22.9	Effect of mutation on human beings	1047
22.10	Mutation followed by natural selection and recombination	1047
22.11	Mutation in apples with a section of different colors over them	1048
22.12	Introduction of abnormalities due to mutation	1048
22.13	Population, chromosomes, and genes in GA	1049
22.14	Variables or parameters of helicopter rotor	1050
22.15	A single-objective optimization problem	1051
22.16	Search space when designing a helicopter rotary	1051
22.17	Role of GA in getting the optimal solution for an optimization problem	1052
22.18	Genetic representation (bitmap)	1053
22.19	Some of the commonly used genetic representations	1053
22.20	Role of a fitness function	1054
22.21	A typical setup of roulette wheel in a casino	1055
22.22	Species playing roulette wheel with a hope to survive to the next generation	1056
22.23	Plotting cumulative frequencies on a number line	1059
22.24	Plotting cumulative frequencies on a number line	1060
22.25	Plotting cumulative frequencies on a number line	1061

22.26	Plotting cumulative frequencies on a number line	1061
22.27	Stochastic universal sampling	1062
22.28	Tournament selection	1063
22.29	Roulette wheel selection where fitness values are very close	1063
22.30	Role of recombination	1065
22.31	Single-point crossover	1065
22.32	Stochastic single-point crossover	1066
22.33	Double-point crossover	1068
22.34	Double-point crossover with overlapping crossover points	1068
22.35	Possible cases of mating	1069
22.36	The process of mutation	1072
22.37	Single-point crossover of a given parent	1073
22.38	Applying mutation over the results of a crossover	1073
22.39	Using the probability of mutation to decide the mutation of a gene	1075
22.40	Working of the main operators in genetic algorithm	1076
22.41	Some populations subjected to selection, crossover, mutation, and elitism	1077
22.42	Elites getting replaced with fitter individuals	1078

Tables

1.1	Key milestones of the foundational phase of machine learning	8
1.2	Key milestones of the transitional phase of machine learning	9
1.3	Key milestones of the contemporary phase of machine learning	10
1.4	Comparison of supervised and unsupervised machine learning	27
1.5	Intial state of Q-Matrix	38
1.6	Updated Q-Matrix after <i>Q</i> (1,5)	39
1.7	Updated Q-Matrix after $Q(2, 3)$	40
1.8	Updated Q-Matrix after <i>Q</i> (3, 1)	42
1.9	Updated Q-Matrix after <i>Q</i> (1,5)	43
1.10	Tabular comparison of data science, data mining, artificial intelligence, machine learning, and deep learning	48
2.1	Differences between lists and tuples	87
2.2	Tabular comparison of list, tuple, dictionary, and set	101
5.1	Instances of the dataset to be used for simple linear regression study	188
5.2	Notations used for simple linear regression	193
5.3	Example dataset	199
5.4	Calculation of cost function	200
5.5	Analysis of cost function with different parameters	207
5.6	Scenario for updating the values of parameters	230
6.1	Computing MSE, MAE, and RMSE manually	260
7.1	Dataset of companies	269
7.2	Multiple linear regression dataset	269
7.3	Populated table with dummy variables	273
7.4	Mathematical representation of different regression models	300
7.5	The institutional position dataset	301

7.6	Effect of degree on polynomial equation	303
7.7	Temperature and vapor pressure readings	306
8.1	Instance of 50_AdAgency	314
8.2	The institutional position dataset	328
8.3	Predicted salary of the employee at level 7.5 with different models	347
8.4	Temperature and vapor pressure readings	348
9.1	Example to check trend of Profit as Up or Down	375
9.2	Dataset of customer to indicate whether they bought computer or not	382
9.3	Information and Gini index for several events	412
9.4	Dataset for Profit prediction based on the input attributes	412
9.5	Dataset of customers to indicate whether they bought computer or not	420
9.6	Database of customers	459
9.7	Unknown sample X	459
9.8	Calculating the class of unknown instances in the database	460
9.9	Dataset for play-prediction based on given day weather conditions	462
9.10	Precision and recall for bird classifier	482
9.11	Confusion matrix of a three-class classifier	484
10.1	Summary of different Euclidean spaces and their corresponding hyperplanes	514
10.2	Properties of exponent function (e ^x)	517
11.1	Some instances of <i>Alexa_dataset</i>	536
11.2	Confusion matrix of the decision tree model	548
11.3	Confusion matrix for random forest model	558
11.4	Confusion matrix of the naive Bayes	564
11.5	Confusion matrix for the k-NN	571
11.6	Confusion matrix of the logistic regression	578
11.7	Confusion matrix of the SVM model	584
11.8	Confusion matrix of the SVM model	590
11.9	Comparing the performance of implemented classification models on given dataset	593
11.11	BoW over the documents	598
12.1	Data to calculate Euclidean distances among three students	616
12.2	Data to calculate Chebyshev distances between object A and object B	620
12.3	Example database for k-means algorithm	624
12.4	Database after the first iteration	626
12.5	Database after the second iteration	628
12.6	Database after the second iteration	629
12.7	Initial dataset for $k = 3$	631

12.8	Final assigned cluster for $k = 3$	632
12.9	Sample instances of Mall–Customer dataset	633
12.10	Seed records	634
12.11	Euclidean distance of each record from seed records	635
12.12	Euclidean distance of each record from modified centroids	637
12.13	Euclidean distance of each record from centroids after the second iteration	639
12.14	Record of students' performance	641
12.15	Seed records	641
12.16	First iteration–allocation of each object to its nearest cluster	642
12.17	Updated centroids after the first iteration	643
12.18	Second iteration-allocation of each object to its nearest cluster	643
12.19	Final allocation	644
12.20	Within (intra) cluster distance of records in cluster 1 with its centroid C1(12.67, 22, 17, 38.33)	645
12.21	Within (intra) cluster and between (inter) cluster distance	646
12.22	Distance matrix for a dataset	657
12.23	Distance matrix after clustering 1, 5	657
12.24	Distance matrix after clustering 3, 4	658
12.25	Distance matrix after clustering 2, $1/5$	658
12.26	Customers and items brought by them per month	659
12.27	Distance matrix of given data	661
12.28	Updated distance matrix	661
12.29	Updated distance matrix	662
12.30	Updated distance matrix	662
12.31	Record of students' performance	664
12.32	Distance matrix at m:1	665
12.33	Cells involved in C1	666
12.34	Updated distance matrix at m:2	666
12.35	Cells involved in cluster C2 (100/106)	667
12.36	Updated distance matrix at m:3	668
12.37	Cells involved in C3	668
12.38	Updated distance matrix at m:4	669
12.39	Cells involved in C4	670
12.40	Updated distance matrix at m:5	670
12.41	Cells involved in C5	671
12.42 https://avxhm.se/b	Updated distance matrix at m:6 logs/hill0	671