e[OFEIBQEEB O ((bEd(0BEB QT

s © E)

:mmmﬁ%:md_ 1=K Nl

DEEP DIVE

ZERO TO DOCKER IN A SINGLE BOOK

By Docker Captain

Nigel Poult®n

May 2025

Docker Deep Dive

Zero to Docker in a single book!

Nigel Poulton
This book is available at https://leanpub.com/dockerdeepdive
This version was published on 2025-05-12

ISBN 9781916585133

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the
right book and build traction once you do.

© 2016 - 2025 Nigel Poulton

https://leanpub.com/dockerdeepdive
https://leanpub.com/
https://leanpub.com/manifesto

Huge thanks to my wife and kids for putting up with a geek in the house who genuinely thinks
he’s a bunch of software running inside of a container on top of midrange biological hardware. It
can't be easy living with me!

Massive thanks as well to everyone who watches my Pluralsight videos. I love connecting with you
and really appreciate all the feedback I've gotten over the years. This was one of the major reasons
I decided to write this book! I hope it’ll be an amazing tool to help you drive your careers even
further forward.

Contents

About thisedition i i e 1
Abouttheauthor 2
0: Aboutthebook 3

Part 1: The big picture stuff 6

1: Containers from 30,000 feet 7
Thebadolddays 7
Hello VMware! 7
VIMWarts . . . o o e e e e e e e e e e e e 7
Hello Containers! e e e 8
Linux containerso i it e e 8
Hello Docker! e 9
Dockerand Windows 9
Whatabout Wasm 10
Dockerand Al. 10
What about Kubernetes 11

2: Docker and container-related standards and projects 13
Docker e 13
Container-related standards and projects 15

3:GettingDocker 19
Docker Desktop 19
Installing Docker with Multipass 22
Installing Dockeron Linux 23

4: Thebigpicture 26
The Ops Perspective 26

The Dev Perspective 30

CONTENTS

Part 2: The technical stuff 35

5:The Docker Engine 36
Docker Engine — The TLDR 36
The Docker Engine 37
The influence of the Open Container Initiative (OCI) 39
FUNC .« o v vttt e e e e e e e e e e e 40
containerd 40
Starting a new container (example) L 41
What's the shimallabout?. 43
How it’simplemented on Linux 43

6: WorkingwithImages 45
Docker images - The TLDR 45
Introtoimages 46
Pullingimages 47
Image registries 48
Image namingand tagging 51
Imagesandlayers 53
Pulling imagesby digest 59
Multi-architecture images 62
Vulnerability scanning with Docker Scout 66
DeletingImages oo 68
Images — Thecommands, 70

7: Working with containers 72
Containers — The TLDR 72
Containers vs VMIs o 73
Images and Containers 76
Check Dockerisrunning 77
Startingacontainer 78
How containers startapps 79
Connecting to a running containerttt 81
Inspecting container processes e 82
The docker inspectcommand 83
Writing datatoacontainer 84
Stopping, restarting, and deleting a container 85
Killing a container’s main processo v v it 87
Debugging slim images and containers with Docker Debug 89
Self-healing containers with restart policies 94
Containers — Thecommands 97

8: Containerizingan app v it e e e e e 99

CONTENTS

Containerizinganapp—-The TLDR. 99
Containerize a single-containerapp 100
Moving to production with multi-stagebuilds 111
Buildx, BuildKit, drivers,and Build Cloud 116
Multi-architecturebuilds o 118
Afewgoodpractices 121
Containerizing an app - Thecommands 124
9: Multi-container apps with Compose 126
Docker Compose — The TLDR 126
Composebackground L 127
Installing Compose oottt e 127
Thesample app o i e 128
Composefiles 130
Deploying apps with Compose 133
Managing apps with Compose 136
Deploying apps with Compose — The commands 139
10: Dockerand AL 141
Docker Model Runner background 141
Docker Model Runner Architecture 142
Installing Docker Model Runner. 144
Explore Docker Model Runner 145
Use Docker Model Runner with Compose 152
Use Docker Model Runner with Open WebUI 155
Running modelsin containers L .. 160
Docker Model Runner - Thecommands 162
Chapter SUMMATrY it e 163
11: DockerandWasm 164
Pre-reqs o . 165
Intro to Wasm and Wasm containers 167
WriteaWasmapp 168
ContainerizeaWasmapp i 170
RunaWasmcontainer. 172
Cleanup 173
Chapter SUMMArY ottt ettt e e e e e e 174
12:Docker Swarm L 175
Swarmoprimer. 175
Buildaswarm 176
Deploy Swarmapp oo 179

Docker Swarm — The Commands 186

CONTENTS

13: Docker Networking e 188
Docker Networking - The TLDR 189
Docker networking theory o o 189
Single-host bridge networks 193
External access viaport mappings 200
Docker Networking — The Commands 214

14: Docker overlay networking 216
Docker overlay networking — The TLDR 216
Docker overlay networking history L ... 216
Building and testing Docker overlay networks 217
Overlay networks explained, 224
Docker overlay networking — The commands. 229

15: Volumes and persistentdata 231
Volumes and persistent data— The TLDR 231
Containers without volumes 232
Containers withvolumes 233
Volumes and persistent data — The Commands 240

16: Dockerssecurity 242
Docker security — The TLDR 242
Kernel Namespaces i 243
Control Groups oo vt 246
Capabilities 246
Mandatory Access Controlsystemst 247
SECCOMP « v v v v e 247
Docker security technologies 248
Swarmsecurity L 248
Docker Scout and vulnerability scanning 256
Signing and verifying images with Docker Content Trust 258
Docker Secrets 261

Whatnext 264

CONTENTS

About this edition

This edition was published in May 2025 and is up to date with the latest industry trends
and the latest enhancements to Docker.

Major changes include:

+ Brand new Docker Model Runner chapter with full Al LLM project
« Updates to BuildKit, buildx, and the new Docker Build Cloud

+ Updates to Docker Debug content

+ Updates to Wasm content

+ Streamlined Swarm chapter

Enjoy the book, and get ready to master containers!

© 2025 Nigel Poulton Ltd.

About the author

Nigel is a technology geek with a passion for learning new technologies and making
them easier for others to learn. He’s the author of best-selling books on Docker and
Kubernetes, as is the author of Al Explained: Facts, Fiction, and Future, a brutal read
into the impacts of Al on society and the future of humanity.

Nigel is a Docker Captain and has held senior technology roles at large and small
enterprises.

In his free time, he listens to audiobooks and coaches youth football (soccer). He wishes
he lived in the future and could understand the mysteries of life and the universe. He’s
passionate about learning, cars, and football (soccer). He lives in England with his
fabulous wife and three children.

Run as

E container i : ‘ !I ‘
: ® |
| e e e e 1 Registry

1
1
1
1
1
]
1
1
A !
1
1
]
1
1
]
1

- e o o o o o o= - - - = o

]

Dockerfile @ X

App —_— Build image !
</> —_— :
1

0: About the book

This May 2025 edition gets you up to speed with Docker and containers fast, no prior
experience necessary.

It has a brand-new chapter covering the latest and greatest Docker Model Runner
content for running local LLMs through Docker!

Why should I read this book or care about Docker?

Docker has already changed how we build, share, and run applications, and it’s now
playing a major role in emerging technologies such as Wasm and Al.

So, if you want the best jobs working with the best technologies, you need a strong
Docker skillset.

How I've organized the book

I've divided the book into two main sections:

1. The big picture stuff
2. The technical stuff

The big picture stuff gets you up to speed with the basics, such as what Docker is, why we
use containers, and fundamental jargon such as cloud-native, microservices, and orchestration.

The technical stuff section covers everything you need to know about images, containers,
multi-container microservices apps, orchestration, and the increasingly important topics of
WebAssembly, running local Al models, vulnerability scanning, debugging containers,
and more.

0: About the book

Chapter breakdown

Chapter 1: Summarizes the history and future of Docker and containers
Chapter 2: Explains the most important container-related standards and projects
Chapter 3: Shows you a few ways to get Docker

Chapter 4: Walks you through deploying your first container

Chapter 5: Deep dive into the Docker Engine architecture

Chapter 6: Deep dive into images and image management

Chapter 7: Deep dive into containers and container management

Chapter 8: Deep dive into containerizing applications

Chapter 9: Walks you through deploying and managing a multi-container Al
chatbot app with Docker Compose

Chapter 10: Dives into the exciting new world of running local Al models with
Docker Model Runner

Chapter 11: Walks you through building, containerizing, and running a Wasm app
with Docker

Chapter 12: Walks you through building a swarm cluster and deploying apps to it
Chapter 13: Deep dive into Docker networking

Chapter 14: Walks you through building and working with overlay networks
Chapter 15: Introduces you to persistent and non-persistent data in Docker

Chapter 16: Covers all the major Linux and Docker security technologies

Editions and updates

Docker, Al, and the cloud-native ecosystem are evolving fast, and 2-3-year-old books
are dangerously outdated. As a result, 'm committed to updating this book at least once
per year.

If that sounds excessive, welcome to the new normal. For example, I released a big
update in January 2025. Then, less than three months later, I was writing a full new
chapter on Docker Model Runner for this May 2025 edition! This is hard work, but I'm
committed to keeping this the best Docker book in the world.

The book is available in hardback, paperback, and e-book on all good book publishing
platforms.

0: About the book 5

Kindle updates

Unfortunately, Kindle readers cannot get updates. I have absolutely no control over

this and was devastated when this change happened. Some people have successfully
contacted Kindle Support and had the support team delete the old copy and push the
new edition. However, this doesn’t always work. Please contact the Kindle Support team
for updates, but if they can’t help, feel free to ping me at the book’s email address.

Feedback

If you like the book and it helps your career, share the love by recommending it to a
friend and leaving a review on Amazon or Goodreads.

If you spot a typo or want to make a recommendation, drop me a quick email at
ddd@nigelpoulton.com and I'll do my best to respond.

That’s everything. Let’s get rocking with Docker!

Part 1: The big picture stuff

1: Containers from 30,000 feet

Containers have taken over the world!

In this chapter, you'll learn why we have containers, what they do for us, and where we
can use them.

The bad old days

Applications are the powerhouse of every modern business. When applications break,
businesses break.

Most applications run on servers, and in the past, we were limited to running one
application per server. As a result, the story went something like this:

Every time a business needed a new application, it had to buy a new server. Unfor-
tunately, we weren’t very good at modeling the performance requirements of new
applications, and we had to guess. This resulted in businesses buying bigger, faster, and
more expensive servers than necessary. After all, nobody wanted underpowered servers
incapable of handling the app, resulting in unhappy customers and lost revenue. As

a result, we ended up with racks and racks of overpowered servers operating as low

as 5-10% of their potential capacity. This was a tragic waste of company capital and
environmental resources.

Hello VMware!

Amid all this, VMware, Inc. gave the world a gift — the virtual machine (VM) — a
technology that allowed us to run multiple business applications on a single server
safely.

It was a game-changer. Businesses could run new apps on the spare capacity of existing
servers, spawning a golden age of maximizing the value of existing assets.

VMwarts

But, and there’s always a but! As great as VMs are, they’re far from perfect.

1: Containers from 30,000 feet

For example, every VM needs its own dedicated operating system (OS). Unfortunately,
this has several drawbacks, including:

+ Every OS consumes CPU, RAM, and other resources we’d rather use on applica-
tions

+ Every VM and OS needs patching
+ Every VM and OS needs monitoring

VMs are also slow to boot and not very portable.

Hello Containers!

While most of us were reaping the benefits of VMs, web scalers like Google had already
moved on from VMs and were using containers.

A feature of the container model is that every container shares the OS of the host it’s
running on. This means a single host can run more containers than VMs. For example,
a host that can run 10 VMs might be able to run 50 containers, making containers far
more efficient than VM.

Containers are also faster and more portable than VMs.

Linux containers

Modern containers started in the Linux world and are the product of incredible work
from many people over many years. For example, Google contributed many container-
related technologies to the Linux kernel. It’s thanks to many contributions like these
that we have containers today.

Some of the major technologies underpinning modern containers include kernel
namespaces, control groups (cgroups), and capabilities.

However, despite all this great work, containers were incredibly complicated, and it
wasn’t until Docker came along that they became accessible to the masses.

Note: [know that many container-like technologies pre-date Docker and
modern containers. However, none of them changed the world the way
Docker has.

1: Containers from 30,000 feet 9

Hello Docker!

Docker was the magic that made Linux containers easy and brought them to the masses.
We'll talk a lot more about Docker in the next chapter.

Docker and Windows

Microsoft worked hard to bring Docker and container technologies to the Windows
platform.

At the time of writing, Windows desktop and server platforms support both of the
following:

« Windows containers

« Linux containers

Windows containers run Windows apps and require a host system with a Windows kernel.
Windows 10, Windows 11, and all modern versions of Windows Server natively support
Windows containers.

Windows systems can also run Linux containers via the WSL 2 (Windows Subsystem for
Linux) subsystem.

This means Windows 10 and Windows 11 are great platforms for developing and testing
Windows and Linux containers.

However, despite all the work developing Windows containers, almost all containers are
Linux containers. This is because Linux containers are smaller and faster, and more
tooling exists for Linux.

All of the examples in this edition of the book are Linux containers.

Windows containers vs Linux containers

It’s vital to understand that containers share the kernel of the host they’re running on.
This means containerized Windows apps need a host with a Windows kernel, whereas
containerized Linux apps need a host with a Linux kernel. However, as mentioned, you
can run Linux containers on Windows systems that have the WSL 2 backend installed.

Terminology: A containerized app is an application running as a container.
We'll cover this in a lot of detail later.

1: Containers from 30,000 feet 10

What about Mac containers?

There is no such thing as Mac containers. However, Macs are great platforms for
working with containers, and I do all of my daily work with containers on a Mac.

The most popular way of working with containers on a Mac is Docker Desktop. It works
by running Docker inside a lightweight Linux VM on your Mac. Other tools, such as
Podman and Rancher Desktop, are also great for working with containers on a Mac.

What about Wasm

Wasm (WebAssembly) is a modern binary instruction set that builds applications that are
smaller, faster, more secure, and more portable than containers. You write your app in
your favorite language and compile it as a Wasm binary that will run anywhere you have
a Wasm runtime.

However, Wasm apps have many limitations, and we're still developing many of
the standards. As a result, containers remain the dominant model for cloud-native
applications.

The container ecosystem is also much richer and more mature than the Wasm ecosys-
tem.

As you'll see in the Wasm chapter, Docker and the container ecosystem are adapting
to work with Wasm apps, and you should expect a future where VMs, containers, and
Wasm apps run side-by-side in most clouds and applications.

This book is up-to-date with the latest Wasm and container developments.

Docker and Al

Developers and organizations are using more and more Al apps, and Docker is regularly
ranked as the No. I most-desired and No. 1 most-used developer tool (Stack Overflow
Annual Developer Survey).

Unfortunately, exposing GPUs and other Al acceleration hardware to apps running
inside containers is very hard. This is because they all have their own drivers and SDKs,
and it’s too much work for the industry to make them all work with containers. As

a result, Docker has released Docker Model Runner as a way of running local LLMs
outside of containers so they have direct access to the host’s hardware.

Chapter 10 is dedicated to running local Al models with Docker Model Runner, and it’s
very exciting.

1: Containers from 30,000 feet 11

What about Kubernetes

Kubernetes is the industry standard platform for deploying and managing containerized
apps.

Older versions of Kubernetes used Docker to start and stop containers. However, newer
versions use containerd, which is a stripped-down version of Docker optimized for use
by Kubernetes and other platforms.

The important thing to know is that all Docker containers work on Kubernetes.
Check out these books if you need to learn Kubernetes:

+ Quick Start Kubernetes: This is ~100 pages and will get you up-to-speed with
Kubernetes in a single day!

+ The Kubernetes Book. This is the ultimate book for mastering Kubernetes.

QUICK START
KUBERNETES

Nigel poult#n

QUICK START KUBERNETES

§
&
“
§
N
§
3
;
N

THEERNETES

BOOK

n
igel Poult®n

Wigel Pouttwn

vt 100+ ratings Yoyl 1,300+ ratings

[update both books annually to ensure they’re up-to-date with the latest and greatest
developments in the cloud native ecosystem.

Chapter Summary

We used to live in a world where every business application needed a dedicated, over-
powered server. VMware came along and allowed us to run multiple applications on
new and existing servers. However, following the success of VMware and hypervisors,
a newer, more efficient, and portable virtualization technology called containers came

1: Containers from 30,000 feet 12

along. However, containers were complex and hard to implement until Docker came
along and made them easy. Wasm and Al are powering new innovations, and the Docker
ecosystem is evolving to work with both. The book has entire chapters dedicated to
working with Al apps and Wasm apps on Docker.

2: Docker and container-related
standards and projects

This chapter introduces you to Docker and some of the most important standards and
projects shaping the container ecosystem. The goal is to lay some foundations that we’ll
build on in later chapters.

This chapter has two main parts:

+ Docker
+ Container-related standards and projects

Docker

Docker is at the heart of the container ecosystem. However, the term Docker can mean
two things:

1. The Docker platform
2. Docker, Inc.

The Docker platform is a neatly packaged collection of technologies for creating, manag-
ing, and orchestrating containers. Docker, Inc. is the company that created the Docker
platform and continues to be the driving force behind developing new features.

Let’s dive a bit deeper.

Docker, Inc.

Docker, Inc. is a technology company based out of Palo Alto and founded by French-
born American developer and entrepreneur Solomon Hykes. Solomon is no longer at
the company.

The company started as a platform as a service (PaaS) provider called dotCloud. Behind the
scenes, dotCloud delivered its services on top of containers and had an in-house tool to
help them deploy and manage those containers. They called this in-house tool Docker.

The word Docker is a British expression short for dock worker referring to someone who
loads and unloads cargo from ships.

