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Preface

Who This Book Is For
If you are reading this book, I assume you already have a working knowledge of a
programming language, such as Python. If you have never programmed before, I
encourage you to first learn a programming language and then come back! I use
Python in this book because it is accessible to programmers and nonprogrammers
alike.

Algorithms are designed to solve common problems that arise frequently in software
applications. When teaching algorithms to undergraduate students, I try to bridge the
gap between the students’ background knowledge and the algorithm concepts I’m
teaching. Many textbooks have carefully written—but always too brief—explanations.
Without having a guide to explain how to navigate this material, students are often
unable to learn algorithms on their own.

In one paragraph and in Figure P-1, let me show you my goal for the book. I intro‐
duce a number of data structures that explain how to organize information using
primitive fixed-size types, such as 32-bit integer values or 64-bit floating point values.
Some algorithms, such as Binary Array Search, work directly on data structures.
More complicated algorithms, especially graph algorithms, rely on a number of fun‐
damental abstract data types, which I introduce as needed, such as stacks or priority
queues. These data types provide fundamental operations that can be efficiently
implemented by choosing the right data structure. By the end of this book, you will
understand how the various algorithms achieve their performance. For these algo‐
rithms, I will either show full implementations in Python or refer you to third-party
Python packages that provide efficient implementation.

If you review the associated code resources provided with the book, you will see that
for each chapter there is a book.py Python file that can be executed to reproduce all
tables within the book. As they say in the business, “your mileage may vary,” but the
overall trends will still appear.

ix



Figure P-1. Summary of the technical content of the book

At the end of every chapter in the book are challenge exercises that give you a chance
to put your new knowledge to the test. I encourage you to try these on your own
before you review my sample solutions, found in the code repository for the book.

About the Code
All the code for this book can be found in the associated GitHub repository,
http://github.com/heineman/LearningAlgorithms. The code conforms to Python 3.4 or
higher. Where relevant, I conform to Python best practices using double underscore
methods, such as __str()__ and __len()__. Throughout the code examples in the
book, I use two-space indentation to reduce the width of the code on the printed
page; the code repository uses standard four-space indentation. In a few code listings,
I format code using an abbreviated one-line if statement like if j == lo: break.

The code uses three externally available, open source Python libraries:

• NumPy version 1.19.5
• SciPy version 1.6.0
• NetworkX version 2.5
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NumPy and SciPy are among the most commonly used open source Python libraries
and have a wide audience. I use these libraries to analyze empirical runtime perfor‐
mance. NetworkX provides a wide range of efficient algorithms for working with
graphs, as covered in Chapter 7; it also provides a ready-to-use graph data type imple‐
mentation. Using these libraries ensures that I do not unnecessarily reinvent the
wheel. If you do not have these libraries installed, you will still be fine since I provide
workarounds.

All timing results presented in the book use the timeit module using repeated runs
of a code snippet. Often the code snippet is run a repeated number of times to ensure
it can be accurately measured. After a number of runs, the minimum time is used as
the timing performance, not the average of all runs. This is commonly considered to
be the most effective way to produce an accurate timing measurement because aver‐
aging a number of runs can skew timing results when some performance runs are
affected by external factors, such as other executing tasks from the operating system.

When the performance of an algorithm is highly sensitive to its input (such as Inser‐
tion Sort in Chapter 5), I will clearly state that I am taking the average over all perfor‐
mance runs.

The code repository contains over 10,000 lines of Python code, with scripts to execute
all test cases and compute the tables presented in the book; many of the charts and
graphs can also be reproduced. The code is documented using Python docstring con‐
ventions, and code coverage is 95%, using https://coverage.readthedocs.io.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Algorithms: A
Programmer’s Guide to Writing Better Code by George T. Heineman (O’Reilly). Copy‐
right 2021 George T. Heineman, 978-1-492-09106-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, file extensions, and points I want to
emphasize.

Constant width

Used for program listings as well as within paragraphs to refer to program ele‐
ments such as variable or function names, data types, statements, and keywords.

This element, identified by an image of a ring-tailed lemur, is a tip
or suggestion. I use this image because lemurs have a combined
visual field of up to 280°, which is a wider visual field than anthro‐
poid primates (such as humans). When you see this tip icon, I am
literally asking you to open your eyes wider to learn a new fact or
Python capability.

This element, identified by an image of a crow, signifies a general
note. Numerous researchers have identified crows to be intelligent,
problem-solving animals—some even use tools. I use these notes to
define a new term or call your attention to a useful concept that
you should understand before advancing to the next page.

This element, identified by an image of a scorpion, indicates a
warning or caution. Much like in real life, when you see a scorpion,
stop and look! I use the scorpion to call attention to key challenges
you must address when applying algorithms.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learn-algorithms.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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CHAPTER 1

Problem Solving

In this chapter, you will learn:

• Multiple algorithms that solve an introductory problem.
• How to consider an algorithm’s performance on problem instances of size N.
• How to count the number of times a key operation is invoked when solving a

given problem instance.
• How to determine order of growth as the size of a problem instance doubles.
• How to estimate time complexity by counting the number of key operations an

algorithm executes on a problem instance of size N.
• How to estimate space complexity by determining the amount of memory

required by an algorithm on a problem instance of size N.

Let’s get started!

What Is an Algorithm?
Explaining how an algorithm works is like telling a story. Each algorithm introduces a
novel concept or innovation that improves upon ordinary solutions. In this chapter I
explore several solutions to a simple problem to explain the factors that affect an
algorithm’s performance. Along the way I introduce techniques used to analyze an
algorithm’s performance independent of its implementation, though I will always pro‐
vide empirical evidence from actual implementations.
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An algorithm is a step-by-step problem-solving method imple‐
mented as a computer program that returns a correct result in a
predictable amount of time. The study of algorithms is concerned
with both correctness (will this algorithm work for all input?) and
performance (is this the most efficient way to solve this problem?).

Let’s walk through an example of a problem-solving method to see what this looks
like in practice. What if you wanted to find the largest value in an unordered list?
Each Python list in Figure 1-1 is a problem instance, that is, the input processed by an
algorithm (shown as a cylinder); the correct answer appears on the right. How is this
algorithm implemented? How would it perform on different problem instances? Can
you predict the time needed to find the largest value in a list of one million values?

Figure 1-1. Three different problem instances processed by an algorithm

An algorithm is more than just a problem-solving method; the program also needs to
complete in a predictable amount of time. The built-in Python function max()
already solves this problem. Now, it can be hard to predict an algorithm’s perfor‐
mance on problem instances containing random data, so it’s worth identifying prob‐
lem instances that are carefully constructed.

Table 1-1 shows the results of timing max() on two kinds of problem instances of size
N: one where the list contains ascending integers and one where the list contains
descending integers. While your execution may yield different results in the table,
based on the configuration of your computing system, you can verify the following
two statements:

• The timing for max() on ascending values is always slower than on descending
values once N is large enough.

• As N increases ten-fold in subsequent rows, the corresponding time for max()
also appears to increase ten-fold, with some deviation, as is to be expected from
live performance trials.
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For this problem, the maximum value is returned, and the input is unchanged. In
some cases, the algorithm updates the problem instance directly instead of comput‐
ing a new value—for example, sorting a list of values, as you will see in Chapter 5. In
this book, N represents the size of a problem instance.

Table 1-1. Executing max() on two kinds of problem instances of size N (time in ms)

N Ascending values Descending values
100 0.001 0.001

1,000 0.013 0.013

10,000 0.135 0.125

100,000 1.367 1.276

1,000,000 14.278 13.419

When it comes to timing:

• You can’t predict in advance the value of T(100,000)—that is, the time required by
the algorithm to solve a problem instance of size 100,000—because computing
platforms vary, and different programming languages may be used.

• However, once you empirically determine T(10,000), you can predict
T(100,000)—that is, the time to solve a problem instance ten times larger—
though the prediction will inevitably be inaccurate to an extent.

When designing an algorithm, the primary challenge is to ensure it is correct and
works for all input. I will spend more time in Chapter 2 explaining how to analyze
and compare the behavior of different algorithms that solve the exact same problem.
The field of algorithm analysis is tied to the study of interesting, relevant problems
that arise in real life. While the mathematics of algorithms can be challenging to
understand, I will provide specific examples to always connect the abstract concepts
with real-world problems.

The standard way to judge the efficiency of an algorithm is to count how many com‐
puting operations it requires. But this is exceptionally hard to do! Computers have a
central processing unit (CPU) that executes machine instructions that perform mathe‐
matical computations (like add and multiply), assign values to CPU registers, and
compare two values with each other. Modern programming languages (like C or
C++) are compiled into machine instructions. Other languages (like Python or Java)
are compiled into an intermediate byte code representation. The Python interpreter
(which is itself a C program) executes the byte code, while built-in functions, such as
min() and max(), are implemented in C and ultimately compiled into machine
instructions for execution.
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The Almighty Array
An array stores a collection of N values in a contiguous block of memory. It is one of
the oldest and most dependable data structures programmers use to store multiple
values. The following image represents an array of eight integers.

The array A has eight values indexed by their location. For example, A[0] = 31, and
A[7] = 5. The values in A can be of any type, such as strings or more complicated
objects.

The following are important things to know about an array:

• The first value, A[0], is at index position 0; the last is A[N–1], where N is the size
of the array.

• Each array has a fixed length. Python and Java allow the programmer to deter‐
mine this length at runtime, while C does not.

• One can read or update an individual location, A[i], based on the index position,
i, which is an integer in the range from 0 to N – 1.

• An array cannot be extended (or shrunk); instead, you allocate a new array of the
desired size and copy old values that should remain.

Despite their simplicity, arrays are an extremely versatile and efficient way to struc‐
ture data. In Python, list objects can be considered an array, even though they are
more powerful because they can grow and shrink in size over time.

It is nearly impossible to count the total number of executed machine instructions for
an algorithm, not to mention that modern day CPUs can execute billions of instruc‐
tions per second! Instead, I will count the number of times a key operation is invoked
for each algorithm, which could be “the number of times two values in an array are
compared with each other” or “how many times a function is called.” In this discus‐
sion of max(), the key operation is “how many times the less-than (<) operator is
invoked.” I will expand on this counting principle in Chapter 2.

Now is a good time to lift up the hood on the max() algorithm to see why it behaves
the way it does.
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Finding the Largest Value in an Arbitrary List
Consider the flawed Python implementation in Listing 1-1 that attempts to find the
largest value in an arbitrary list containing at least one value by comparing each value
in A against my_max, updating my_max as needed when larger values are found.

Listing 1-1. Flawed implementation to locate largest value in list

def flawed(A):
  my_max = 0        
  for v in A:       
    if my_max < v:
      my_max = v    
  return my_max

my_max is a variable that holds the maximum value; here my_max is initialized to 0.

The for loop defines a variable v that iterates over each element in A. The if
statement executes once for each value, v.

Update my_max if v is larger.

Central to this solution is the less-than operator (<) that compares two numbers to
determine whether a value is smaller than another. In Figure 1-2, as v takes on suc‐
cessive values from A, you can see that my_max is updated three times to determine the
largest value in A. flawed() determines the largest value in A, invoking less-than six
times, once for each of its values. On a problem instance of size N, flawed() invokes
less-than N times.

Figure 1-2. Visualizing the execution of flawed()
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This implementation is flawed because it assumes that at least one value in A is greater
than 0. Computing flawed([–5,–3,–11]) returns 0, which is incorrect. One com‐
mon fix is to initialize my_max to the smallest possible value, such as my_max =
float('-inf'). This approach is still flawed since it would return this value if A is the
empty list []. Let’s fix this defect now.

The Python statement range(x,y) produces the integers from x up
to, but not including, y. You can also request range(x,y,–1),
which produces the integers from x counting down to, but not
including, y. Thus list(range(1,7)) produces [1,2,3,4,5,6],
and list(range(5,0,–1)) produces [5,4,3,2,1]. You can count
by arbitrary increments, thus list(range(1,10,2)) produces
[1,3,5,7,9] using a difference of 2 between values.

Counting Key Operations
Since the largest value must actually be contained in A, the correct largest() func‐
tion in Listing 1-2 selects the first value of A as my_max, checking other values to see if
any value is larger.

Listing 1-2. Correct function to find largest value in list

def largest(A):
  my_max = A[0]                 
  for idx in range(1, len(A)):  
    if my_max < A[idx]:
      my_max = A[idx]           
  return my_max

Set my_max to the first value in A, found at index position 0.

idx takes on integer values from 1 up to, but not including, len(A).

Update my_max if the value in A at position idx is larger.

If you invoke largest() or max() with an empty list, it will raise a
ValueError: list index out of range exception. These run‐
time exceptions are programmer errors, reflecting a failure to
understand that largest() requires a list with at least one value.
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Now that we have a correct Python implementation of our algorithm, can you deter‐
mine how many times less-than is invoked in this new algorithm? Right! N – 1 times.
We have fixed the flaw in the algorithm and improved its performance (admittedly,
by just a tiny bit).

Why is it important to count the uses of less-than? This is the key operation used
when comparing two values. All other program statements (such as for or while
loops) are arbitrary choices during implementation, based on the program language
used. We will expand on this idea in the next chapter, but for now counting key oper‐
ations is sufficient.

Models Can Predict Algorithm Performance
What if someone shows you a different algorithm for this same problem? How would
you determine which one to use? Consider the alternate() algorithm in Listing 1-3
that repeatedly checks each value in A to see if it is larger than or equal to all other
values in the same list. Will this algorithm return the correct result? How many times
does it invoke less-than on a problem of size N?

Listing 1-3. A different approach to locating largest value in A

def alternate(A):
  for v in A:
    v_is_largest = True        
    for x in A:
      if v < x:
        v_is_largest = False   
        break
    if v_is_largest:
      return v                
  return None                  

When iterating over A, assume each value, v, could be the largest.

If v is smaller than another value, x, stop and record that v is not greatest.

If v_is_largest is true, return v since it is the maximum value in A.

If A is an empty list, return None.

Models Can Predict Algorithm Performance | 7



alternate() attempts to find a value, v, in A such that no other value, x, in A is
greater. The implementation uses two nested for loops. This time it’s not so simple to
compute how many times less-than is invoked, because the inner for loop over x
stops as soon as an x is found that is greater than v. Also, the outer for loop over v
stops once the maximum value is found. Figure 1-3 visualizes executing alternate()
on our list example.

Figure 1-3. Visualizing the execution of alternate()

For this problem instance, less-than is invoked 14 times. But you can see that this
total count depends on the specific values in the list A. What if the values were in a
different order? Can you think of an arrangement of values that requires the least
number of less-than invocations? Such a problem instance would be considered a best
case for alternate(). For example, if the first value in A is the largest of all N values,
then the total number of calls to less-than is always N. To summarize:

Best case
A problem instance of size N that requires the least amount of work performed
by an algorithm

Worst case
A problem instance of size N that demands the most amount of work

Let’s try to identify a worst case problem instance for alternate() that requires the
most number of calls to less-than. More than just ensuring that the largest value is the
last value in A, in a worst case problem instance for alternate(), the values in A must
appear in ascending order.
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Figure 1-4 visualizes a best case on the top where p = [9,5,2,1,3,4] and a worst
case on the bottom where p = [1,2,3,4,5,9].

Figure 1-4. Visualizing the execution of alternate() on best and worst cases
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In the best case, there are six calls to less-than; if there were N values in a best case,
then the total number of invocations to less-than would be N. It’s a bit more compli‐
cated for the worst case. In Figure 1-4 you can see there are a total of 26 calls to less-
than when the list of N values is in ascending sorted order. With a little bit of
mathematics, I can show that for N values, this count will always be (N2 + 3N – 2)/2.

Table 1-2 presents empirical evidence on largest() and alternate() on worst case
problem instances of size N.

Table 1-2. Comparing largest() with alternate() on worst case problem instances

N Largest Alternate Largest Alternate

(# less-than) (# less-than) (time in ms) (time in ms)
8     7        43 0.001  0.001

16    15       151 0.001  0.003

32    31       559 0.002  0.011

64    63     2,143 0.003  0.040

128   127     8,383 0.006  0.153

256   255    33,151 0.012  0.599

512   511   131,839 0.026  2.381

1,024 1,023   525,823 0.053  9.512

2,048 2,047 2,100,223 0.108 38.161

For small problem instances, it doesn’t seem bad, but as the problem instances double
in size, the number of less-than invocations for alternate() essentially quadruples,
far surpassing the count for largest(). The next two columns in Table 1-2 show the
performance of these two implementations on 100 random trials of problem instan‐
ces of size N. The completion time for alternate() quadruples as well.

I measure the time required by an algorithm to process random
problem instances of size N. From this set of runs, I select the
quickest completion time (i.e., the smallest). This is preferable to
simply averaging the total running time over all runs, which might
skew the results.

Throughout this book, I am going to present tables, like Table 1-2, containing the
total number of executions of a key operation (here, the less-than operator) as well as
the runtime performance. Each row will represent a different problem instance size,
N. Read the table from top to bottom to see how the values in each column change as
the problem instance size doubles.
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